SERIES 680XXB SYNTHESIZED CW GENERATOR

OPERATION MANUAL

___/Inritsu _____

P/N: 10370-10264 REVISION: F PRINTED: AUGUST 1999 COPYRIGHT 1994 ANRITSU CO.

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.

ANRITSU's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

Adobe Acrobat is a registered trademark of Adobe Systems Incorporated.

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of ANRITSU Company.

DECLARATION OF CONFORMITY

Manufacturer's Name:	ANRITSU COMPANY
Manufacturer's Address	S: Microwave Measurements Division 490 Jarvis Drive Morgan Hill, CA 95037-2809 USA
declares that the product specifi	ied below:
Product Name:	Synthesized CW / Sweep / Signal Generator
Model Number:	680XXB, 681XXB, 682XXB, 683XXB
conforms to the requirement of	:
	EC as amended by Council Directive 92/31/EEC & 93/68/EEC 3/23/EEC as amended by Council directive 93/68/EEC
Electromagnetic Interfe	rence:
Emissions:	CISPR 11:1990/EN55011:1991 Group 1 Class A
Immunity:	IEC 1000-4-2:1995/prEN50082-1:1995 - 4kV CD, 8kV AD IEC 1000-4-3:1993/ENV50140:1994 - 3V/m IEC 1000-4-4:1995/prEN50082-1:1995 - 0.5kV SL, 1kV PL IEC 1000-4-5:1995/prEN50082-1:1995 - 0.5kV - 1kV LN 0.5kV - 1kV NG 0.5kV - 1kV GL
Electrical Safety Requir	ement:
Product Safety:	IEC 1010-1:1990 + A1/EN61010-1:1993
Morgan Hill, CA	$\frac{\frac{1}{100000000000000000000000000000000$

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, ANRITSU Company uses the following symbols to indicate safety-related information. For your own safety, please read the information carefully BEFORE operating the equipment.

WARNING	WARNING indicates a hazard. It calls attention to a procedure that could result in personal injury or loss of life if not performed properly. Do not proceed beyond a WARNING notice until the indicated condi- tions are fully understood and met.
CAUTION	CAUTION indicates a hazard. It calls attention to a procedure which, if not performed properly, could result in damage to or destruction of a component of the instrument. Do not proceed beyond a CAUTION note until the indicated conditions are fully understood and met.
\triangle	The instrument is marked with this symbol to indicate that it is neces- sary for the user to refer to the instructions in the operation manual.
	Indicates ground.

Indicates heavy weight equipment.

For Safety

WARNING

When supplying power to this equipment, *always* use a three-wire power cable connected to a three-wire power line outlet. If power is supplied without grounding the equipment in this manner, there is a risk of receiving a severe or fatal electric shock.

WARNING

Before changing the fuse, *always* remove the power cord from the power outlet. There is the risk of receiving a fatal electric shock if the fuse is replaced with the power cord connected.

Always use a new fuse of the type and rating specified by the fuse markings on the rear panel of the instrument.

WARNING

There are no operator serviceable components inside. Refer servicing of the instrument to qualified service technicians.

To prevent the risk of electrical shock or damage to precision components, *do not* remove the equipment covers.

WARNING

Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

Chapter 1 - General Information

1-1	SCOPE OF MANUAL
1-2	INTRODUCTION
1-3	DESCRIPTION
1-4	IDENTIFICATION NUMBER
1-5	ELECTRONIC MANUAL
1-6	RELATED MANUALS
	GPIB Programming Manual1-6SCPI Programming Manual1-6Maintenance Manual1-7
1-7	OPTIONS
1-8	PERFORMANCE SPECIFICATIONS 1-8
1-9	RECOMMENDED TEST EQUIPMENT

Chapter 2 - Installation

2-1	INTRODUCTION
2-2	INITIAL INSPECTION
2-3	PREPARATION FOR USE
	Power Requirements2-4Line Voltage Selection2-4Power Connection2-4Standby Operation2-4Warmup Time2-5Warmup Time2-6Operating Environment2-6
2-4	GPIB SETUP AND INTERCONNECTION2-7Interface Connector2-7Cable Length Restrictions2-7GPIB Interconnection2-7Setting the GPIB Address2-7Selecting the Line Terminator2-9Selecting the Interface Language2-9
2-5	RACK MOUNTING KIT INSTALLATION 2-10Preliminary

2-6	PREPARATION FOR STORAGE/SHIPMENT	2-13
	Preparation for Storage	2-13
	Preparation for Shipment	2-13

Chapter 3 - Local (Front Panel) Operation

0.1	
3-1	INTRODUCTION
3-2	FRONT PANEL LAYOUT.3-6Line Key3-6Data Display Area3-6Data Entry Area3-7RF Output Control Key3-7Connectors3-7
3-3	DATA DISPLAY AREA
3-4	DATA ENTRY AREA
3-5	INSTRUMENT START-UP3-14Powering Up the 680XXB.3-14Start-Up Display3-14Standby Operation3-14Self-Testing the 680XXB3-15Resetting to Default Parameters3-15
3-6	ENTERING DATA3-18Opening the Parameter3-18Editing the Current Value3-19Entering a New Value3-20
3-7	CW FREQUENCY OPERATION3-21Selecting CW Mode3-21Selecting a CW Frequency3-21Selecting a Power Level3-23CW Ramp3-24
3-8	SWEEP FREQUENCY OPERATION.3-25Selecting Step Sweep Mode.3-25Setting Step Size and Dwell Time.3-26Selecting a Sweep Trigger3-27Selecting Manual Sweep Mode3-28Selecting a Sweep Range3-29Selecting a Power Level.3-31

	Frequency Markers <th< th=""><th></th></th<>	
3-9	FIXED POWER LEVEL OPERATION 3	-37
	Selecting Fixed Power Level Mode 3	-37
		-37
	Level Offset	-40
3-10	POWER LEVEL SWEEP OPERATION 3	-41
	Selecting CW Power Sweep Mode	-41
	Dwell Time	-42
	Selecting a CW Power Sweep Trigger 3	
	Selecting a Power Level Sweep Range 3	
	Selecting a Sweep Frequency/Step Power Mode . 3	
	Setting Power Level Step Size 3	-47
3-11	LEVELING OPERATIONS	-48
	Selecting a Leveling Mode 3	-48
	Attenuator Decoupling 3	-52
	ALC Power Slope	
	User Level Calibration	-55
3-12	SYSTEM CONFIGURATION	
	Configuring the Front Panel 3	
	Configuring the Rear Panel	-63
	Configuring the RF	
	Configuring the GPIB	
	Setting Increment Sizes 3	
3-13	SAVING/RECALLING INSTRUMENT SETUPS . 3	-69
	Saving Setups	
	Recalling Setups	-69
	Erasing Stored Setups 3	-70
3-14	SECURE OPERATION	-71
3-15	REFERENCE OSCILLATOR CALIBRATION 3	-72
<u>Chapter</u>	4 - Local Operation–Menu Maps	

4-1	INTRODUCTION	4-3
4-2	MENU MAP DESCRIPTION	4-3

Chapter 5 - Operation Verification

-	-
5-1	INTRODUCTION
5-2	TEST EQUIPMENT
5-3	TEST RECORDS
5-4	INITIAL 680XXB CHECKOUT
	Power Up
	Self Test
	Resetting the 680XXB5-4Warmup Time5-4
5-5	CW FREQUENCY ACCURACY TEST 5-5
	Test Setup
	Test Procedure
5-6	POWER LEVEL ACCURACY AND FLATNESS TESTS
	Test Setup 5-13
	Power Level Accuracy Test Procedure
	Power Level Flatness Test Procedure 5-15
<u>Chapter</u>	<u> 6 - Operator Maintenance</u>
6-1	INTRODUCTION
6-2	ERROR AND WARNING/STATUS MESSAGES 6-3
	Self-Test Error Messages 6-3
	Normal Operation Error and Warning/ Status Messages
6-3	TROUBLESHOOTING 6-10
6-4	ROUTINE MAINTENANCE 6-13
	Cleaning the Fan Filter 6-13
	Cleaning the Data Display 6-14
	Replacing the Line Fuse 6-14

Chapter 7 - Use With Other Instruments

7-1	INTRODUCTION	7-3
7-2	MASTER-SLAVE OPERATION	7-4
	Connecting the 68XXXBs	7-4
	Initiating Master-Slave Operation	7-5
	Master-Slave Operation	7-7

	Master-Slave Operation in VNA Mode7-7Terminating Master-Slave Operation7-9
7-3	USE WITH A 562 SCALAR NETWORK ANALYZER
7-4	USE WITH A 360B VECTOR NETWORK ANALYZER
<u>Appendix</u>	<u> A - Rear Panel Connectors</u>
A-1	INTRODUCTION

A-I	
A-2	REAR PANEL CONNECTORS
A-3	CONNECTOR PINOUT DIAGRAMS

Appendix B - Performance Specifications

Chapter 1 General Information

Table of Contents

1-1	SCOPE OF MANUAL
1-2	INTRODUCTION
1-3	DESCRIPTION
1-4	IDENTIFICATION NUMBER 1-6
1-5	ELECTRONIC MANUAL
1-6	RELATED MANUALS
	GPIB Programming Manual
1-7	OPTIONS
1-8	PERFORMANCE SPECIFICATIONS 1-8
1-9	RECOMMENDED TEST EQUIPMENT 1-8

Figure 1-1. Series 680XXB Synthesized CW Generator

Chapter 1 General Information

1-1	SCOPE OF MANUAL	This manual provides general information, installation, and operating information for the ANRITSU Series 680XXB Synthesized CW Gener- ator. (Throughout this manual, the terms <i>680XXB</i> and <i>CW generator</i> will be used interchangeably to refer to the instrument.) Manual or- ganization is shown in the table of contents.
1-2	INTRODUCTION	This chapter contains general information about the series 680XXB CW generators. It includes a general description of the instrument and information on its identification number, related manuals, op- tions, and performance specifications. A listing of recommended test equipment is also provided.
1-3	DESCRIPTION	The Series 680XXB Synthesized CW Generators are microprocessor- based, synthesized signal sources with high resolution phase-lock ca- pability. They generate both discrete CW frequencies and broad (full range) and narrow band step sweeps across the frequency range of 10 MHz to 65 GHz. All functions of the CW generator are fully control- lable locally from the front panel or remotely (except for power on/ standby) via the IEEE-488 General Purpose Interface Bus (GPIB). The series presently consists of 15 models covering a variety of fre- quency and power ranges. Table 1-1, page 1-4, lists models, frequency ranges, and maximum leveled output.

GENERAL INFORMATION

680XXB Model	Frequency (GHz)	Output Power	Output Power w/Step Attenuator
68037B	2.0 – 20.0 GHz	+13.0 dBm	+11.0 dBm
68045B	0.5 – 20.0 GHz	+13.0 dBm	+11.0 dBm
68047B	0.01 – 20.0 GHz	+13.0 dBm	+11.0 dBm
68053B	2.0 – 20.0 GHz	+9.0 dBm	+7.0 dBm
	20.0 – 26.5 GHz	+6.0 dBm	+3.5 dBm
	0.5 – 2.2 GHz	+13.0 dBm	+11.0 dBm
68055B	2.2 – 20.0 GHz	+9.0 dBm	+7.0 dBm
	20.0 – 26.5 GHz	+6.0 dBm	+3.5 dBm
	0.01 – 2.0 GHz	+13.0 dBm	+11.0 dBm
68059B	2.0 – 20.0 GHz	+9.0 dBm	+7.0 dBm
	20.0 – 26.5 GHz	+6.0 dBm	+3.5 dBm
COOCOD	2.0 – 20.0 GHz	+9.0 dBm	+7.0 dBm
68063B	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
	0.5 – 2.2 GHz	+13.0 dBm	+11.0 dBm
68065B	2.2 – 20.0 GHz	+9.0 dBm	+7.0 dBm
	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
	0.01 – 2.0 GHz	+13.0 dBm	+11.0 dBm
68069B	2.0 – 20.0 GHz	+9.0 dBm	+7.0 dBm
	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
	0.5 – 2.2 GHz	+11.0 dBm	+10.0 dBm
68075B	2.2 – 20.0 GHz	+10.0 dBm	+8.5 dBm
000736	20.0 – 40.0 GHz	+2.5 dBm	0.0 dBm
	40.0 – 50.0 GHz	+2.5 dBm	–1.0 dBm
	0.01 – 2.0 GHz	+12.0 dBm	+10.0 dBm
68077B	2.0 – 20.0 GHz	+10.0 dBm	+8.5 dBm
000778	20.0 – 40.0 GHz	+2.5 dBm	0.0 dBm
	40.0 – 50.0 GHz	+2.5 dBm	–1.0 dBm
	0.5 – 2.2 GHz	+11.0 dBm	+10.0 dBm
	2.2 – 20.0 GHz	+10.0 dBm	+8.5 dBm
68085B	20.0 – 40.0 GHz	+2.5 dBm	0.0 dBm
	40.0 – 50.0 GHz	+2.0 dBm	–1.5 dBm
	50.0 – 60.0 GHz	+2.0 dBm	–2.0 dBm
	0.01 – 2.0 GHz	+12.0 dBm	+10.0 dBm
	2.0 – 20.0 GHz	+10.0 dBm	+8.5 dBm
68087B	20.0 – 40.0 GHz	+2.5 dBm	0.0 dBm
	40.0 – 50.0 GHz	+2.0 dBm	–1.5 dBm
	50.0 – 60.0 GHz	+2.0 dBm	–2.0 dBm
	0.5 – 2.2 GHz	+11.0 dBm	
	2.2 – 20.0 GHz	+10.0 dBm	Not
68095B	20.0 – 40.0 GHz	+2.5 dBm	Available
	40.0 – 50.0 GHz	0.0 dBm	
	50.0 – 65.0 GHz	–2.0 dBm	

GENERAL INFORMATION

680XXB Model	Frequency (GHz)	Output Power	Output Power w/Step Attenuator
	0.01 – 2.0 GHz	+12.0 dBm	
	2.0 – 20.0 GHz	+10.0 dBm	Not
68097B	20.0 – 40.0 GHz	+2.5 dBm	Available
	40.0 – 50.0 GHz	0.0 dBm	/ Wallable
	50.0 – 65.0 GHz	–2.0 dBm	
	With Option 154	(High Power) Inst	alled
68037B	2.0 – 20.0 GHz	+17.0 dBm	+15.0 dBm
68045B	0.5 – 2.2 GHz	+13.0 dBm	+11.0 dBm
68045B	2.2 – 20.0 GHz	+17.0 dBm	+15.0 dBm
60047D	0.01 – 2.0 GHz	+13.0 dBm	+11.0 dBm
68047B	2.0 – 20.0 GHz	+17.0 dBm	+15.0 dBm
68053B	2.0 – 20.0 GHz	+13.0 dBm	+11.0 dBm
000000	20.0 – 26.5 GHz	+10.0 dBm	+7.5 dBm
	0.5 – 2.2 GHz	+13.0 dBm	+11.0 dBm
68055B	2.2 – 20.0 GHz	+13.0 dBm	+11.0 dBm
	20.0 – 26.5 GHz	+10.0 dBm	+7.5 dBm
	0.01 – 2.0 GHz	+13.0 dBm	+11.0 dBm
68059B	2.0 – 20.0 GHz	+13.0 dBm	+11.0 dBm
	20.0 – 26.5 GHz	+10.0 dBm	+7.5 dBm
68063B	2.0 – 20.0 GHz	+13.0 dBm	+11.0 dBm
000000	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
	0.5 – 2.2 GHz	+13.0 dBm	+11.0 dBm
68065B	2.2 – 20.0 GHz	+13.0 dBm	+11.0 dBm
	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
_	0.01 – 2.0 GHz	+13.0 dBm	+11.0 dBm
68069B	2.0 – 20.0 GHz	+13.0 dBm	+11.0 dBm
	20.0 – 40.0 GHz	+6.0 dBm	+3.0 dBm
68075B	0.5 – 50.0 GHz	Standard	Standard
68077B	0.01 – 50.0 GHz	Standard	Standard
68085B	0.5 – 60.0 GHz	Standard	Standard
68087B	0.01 – 60.0 GHz	Standard	Standard
68095B	0.5 – 65.0 GHz	Standard	Not Available
68097B	0.01 – 65.0 GHz	Standard	Not Available

Table 1-1.Series 680XXB Models (2 of 2)

GENERAL
INFORMATION

1-4	IDENTIFICATION NUMBER	All ANRITSU instruments are assigned a unique six-digit ID numbe such as "401001". The ID number is imprinted on a decal that is af- fixed to the rear panel of the unit. Special-order instrument configu- tions also have an additional <i>special</i> serial number tag attached to t rear panel of the unit.	
		ice, please use th	earts or corresponding with ANRITSU Customer Serv- ne correct serial number with reference to the specific del number (i.e., Model 68047B Synthesized CW Gen- . 401001).
1-5	ELECTRONIC MANUAL	Document Forma Reader, a free pr is "linked" such t displayed "bookn topic resides. The	vailable on CD ROM as an Adobe Acrobat Portable at (*.pdf) file. The file can be viewed using Acrobat ogram that is also included on the CD ROM. The file that the viewer can choose a topic to view from the mark" list and "jump" to the manual page on which the e text can also be word-searched. Contact ANRITSU e for price and availability.
1-6	RELATED MANUALS	This is one of a four manual set that consists of an Operation Mar a GPIB Programming Manual, a SCPI Programming Manual, and Maintenance Manual.	
		<i>GPIB Pro- gramming Manual</i>	This manual provides information for remote opera- tion of the CW generator with Product Specific com- mands sent from an external controller via the IEEE 488 General Purpose Interface Bus (GPIB). It contains a general description of the GPIB and bus data transfer and control functions, a complete list- ing and description of all 680XXB GPIB Product Specific commands, and several programming exam- ples. The ANRITSU part number for the PM is 10370-10266.
		<i>SCPI Pro- gramming Manual</i>	This manual provides information for remote opera- tion of the CW generator with Standard Commands for Programmable Instruments (SCPI) commands sent from an external controller via the IEEE 488 General Purpose Interface Bus (GPIB). It contains a general description of the GPIB and bus data trans- fer and control functions, a complete listing and description of each command in the 680XXB SCPI command set, and examples of command usage. The ANRITSU part number for the SCPI Programming Manual is 10370-10272.

1-7 OPTIONS

The Maintenance Manual supplies service informa-Maintenance Manual tion for all models in the 680XXB series. The service information includes functional circuit descriptions, block diagrams, performance verification tests, calibration procedures, troubleshooting data, and assembly and component removal/replacement procedures. The ANRITSU part number for the MM is 10370-10262. The following options are available. Option 1, Rack Mounting. Rack mount kit containing a set of track slides (90° tilt capability), mounting ears, and front panel handles for mounting the instrument in a standard 19-inch equipment rack. Option 2A, 110 dB Step Attenuator. Adds a 10 dB per step attenuator with a 110 dB range for models having a high-end frequency of ≤26.5 GHz. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 2B, 110 dB Step Attenuator. Adds a 10 dB per step attenuator with a 110 dB range for models having a high-end frequency of ≤40 GHz. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 2C, 90 dB Step Attenuator. Adds a 10 dB per step attenuator with a 90 dB range for models having a high-end frequency of ≤50 GHz. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 2D, 90 dB Step Attenuator. Adds a 10 dB per step attenuator with a 90 dB range for models having a high-end frequency of ≤60 GHz. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 9, Rear Panel RF Output. Moves the RF output connector to the rear panel.

Option 11, 0.1 Hz Frequency Resolution. Provides frequency resolution of 0.1 Hz.

Option 14, ANRITSU 360B VNA Compatibility. Modifies rack mounting hardware to mate unit in a ANRITSU 360B VNA console.

Option 15A, High Power Output. Adds high-power RF components to the instrument providing increased RF output power in the 2–26.5 GHz frequency range. Option 15A is standard in models having a high-end frequency that is >40 GHz.

Option 16, High-Stability Time Base. Adds an ovenized, 10 MHz crystal oscillator with $<5 \times 10^{-10}$ /day frequency stability.

		mote contro		etes the front panel for use in re- ont panel display or keyboard	
			WRxx Millimeter Wave S	s Output . Provides bias output Source Modules. BNC Twinax	
		monics con	plying with Standard Co (SCPI), Version 1993.0. S	y. Adds GPIB command mne- mmands for Programmable In- CPI programming complies with	
<i>1-8</i>	PERFORMANCE SPECIFICATIONS	Synthesizer p	performance specifications	s are provided in Appendix B.	
1-9	RECOMMENDED TEST EQUIPMENT			quipment for performing the Seo or operation verification tests in	
		Table 1-2. Re	ecommended Test Equipment		
		Instrument	Critical Specification	Recommended Manufac- turer/Model	
		Frequency Counter, with	Range: 0.01 to 65 GHz Input Z: 50Ω Resolution: 1 Hz	EIP Microwave, Inc. Models 538B, 548B, or 578B, with	
		Cable Kit and	<i>Other:</i> External Time Base Input	Cable Kit: Option 590 and	
		External Mixer	input	External Mixer: Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz) Option 93 (60 to 90 GHz)	
		Power Meter, with Power Sensor	<i>Range:</i> –30 to +20 dBm (1μW to 100 mW)	Hewlett-Packard Model 437B, with Power Sensor: HP 8487A (0.01 to 50 GHz)	
		Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: 2 mV/ di- vision Horiz Sensitivity: 50 ns/ divi- sion	Tektronix, Inc. Model TAS485	
		Adapter	K (male) to 2.4 mm (female)	Hewlett-Packard	

Adapts the Power Sensor,

HP 8487A, to the 680XXB RF OUTPUT connector (≤40 GHz models). Part Number: HP 11904D

Chapter 2 Installation

Table of Contents

2-1	INTRODUCTION
2-2	INITIAL INSPECTION
2-3	PREPARATION FOR USE
	Power Requirements.2-4Line Voltage Selection2-4Power Connection2-4Standby Operation2-4Warmup Time2-5Warmup Time2-6Operating Environment2-6
2-4	GPIB SETUP AND INTERCONNECTION2-7Interface Connector2-7Cable Length Restrictions2-7GPIB Interconnection2-7Setting the GPIB Address2-7Selecting the Line Terminator2-9Selecting the Interface Language2-9
2-5	RACK MOUNTING KIT INSTALLATION 2-10Preliminary
2-6	PREPARATION FOR STORAGE/SHIPMENT 2-13Preparation for Storage

Chapter 2 Installation

2-1 INTRODUCTION

This chapter provides installation instructions for the Series 680XXB Synthesized CW Generator. It includes information on initial inspection, preparation for use, storage, and reshipment, and General Purpose Interface Bus (GPIB) setup and interconnections.

WARNING

Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

>18 kg

A CAUTION

2-2 INITIAL INSPECTION

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, retain until the contents of the shipment have been checked against the packing list and the CW generator has been checked for mechanical and electrical operation.

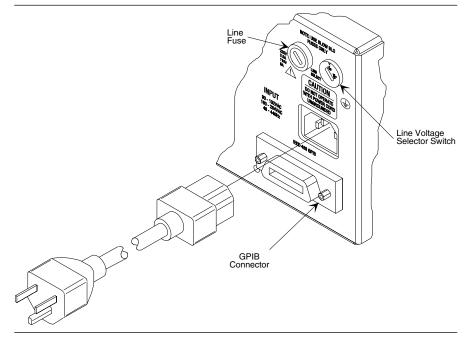
If the shipment is incomplete or if the CW generator is damaged mechanically or electrically, notify your local sales representative or ANRITSU Customer Service. If either the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as ANRITSU. Keep the shipping materials for the carrier's inspection.

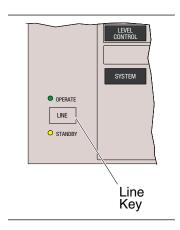
2-3	PREPARATION FOR USE	voltage selector necting the CW graphs provide t	use consists of (1) checking that the rear panel line switch is set for the correct line voltage and (2) con- generator to the power source. The following para- hese procedures along with information about power armup times, and the operating environment.	
		Power Re- quirements	The CW generator accepts 90 to 132 Vac and 180 to 264 Vac, 48 to 400 Hz, single-phase power. Power consumption is 400 VA maximum. The CW generator is intended for Installation Category (Overvoltage Category) II.	
	▲ ·			
	\triangle	Before applying power, verify that the unit is set to match the available line voltage and that the installed fuse is of the correct type and rating.		
		Line Voltage Selection	The line voltage selector switch on the rear panel can be set for either 110 Vac or 220 Vac operation (Figure 2-1). When the switch is set to 110 Vac, the 680XXB accepts 90 to 132 Vac line voltage. When the switch is set to 220 Vac, the 680XXB accepts 180 to 264 Vac line voltage. If the selector setting is in- correct for the line voltage available, change it to the correct setting.	
			Whenever the selector setting is changed, the line fuse must be changed to the correct value for the line voltage selected. Line fuse values for the line voltages are printed on the rear panel next to the fuse holder.	
		three-wire outlet. If po	lying power to this equipment, <i>always</i> use a power cable connected to a three-wire power line ower is supplied without grounding the equip- s manner, there is a risk of receiving a severe or	
		Power Con- nection	Connecting the 680XXB to line power automatically places it in operation (front panel OPERATE LED on). To connect it to the power source, plug the female end of the power cable into the input line	

680XXB OM

voltage receptacle on the rear panel (Figure 2-1). Then plug the male end of the power cord into a

three-wire power line outlet.



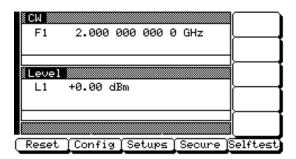

Figure 2-1. CW Generator Rear Panel showing Power Connection

Standby Operation Whenever the CW generator is not being used it should be left connected to the power source and placed in standby. This keeps the internal timebase frequency reference at operating temperature.

On the front panel, press LINE to switch the 680XXB from OPERATE (green LED on) to STANDBY (orange LED on).

NOTE

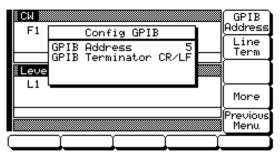
During standby operation, the fan runs continuously.



Warmup Time	From a cold start (ac power application), the CW generator requires approximately 120 hours (5 days) of warm up to achieve 2 x 10^{-8} /day frequency accuracy and stability.
	If the Option 16 time base is installed, the 680XXB requires approximately 120 hours (5 days) of warm up to achieve 5 x 10^{-10} /day frequency accuracy and stability. Instruments disconnected from AC power for more than 72 hours require 30 days to return to specified aging.
	When placing the 680XXB in operation from stand- by, allow 30 minutes warmup to assure stable opera- tion.
Operating Environment	The 680XXB can be operated within the following environmental limits.
	 Temperature. 0°C to 50°C (-32°F to 122°F). Humidity. 5 to 95% relative at 40°C. Altitude. up to 4600 meters (approximately 15,000 feet). Cooling. Internal cooling is provided by forced airflow from the fan mounted on the rear panel.
	alling the 680XXB in its operating environment, all airflow passages at the sides and rear of the

ensure that all airflow passages at the sides and rear of the instrument are clear. This is of particular importance whenever the unit is being rack-mounted.

Keep the cooling fan filter clean so that the ventilation holes are not obstructed. A blocked fan filter can cause the instrument to overheat and shut down.


2-4	GPIB SETUP AND INTERCONNECTION	The 680XXB provides automated microwave signal generation via the GPIB. The following paragraphs provide information about interface connections, cable requirements, setting the GPIB operating parameters, and selecting the external interface language.		
		Interface Connector	Interface between the CW generator and other de- vices on the GPIB is via a 24-wire interface cable. This cable uses connector shells having two connec- tor faces. These double-faced connectors allow for the parallel connection of two or more cables to a single device. Figure 2-1 shows the location of the rear panel GPIB connector.	
		Cable Length Restrictions	The GPIB can accommodate up to 15 instruments at any one time. To achieve design performance on the bus, proper timing and voltage level relationships must be maintained. If either the cable length be- tween separate instruments or the cumulative cable length between all instruments is too long, the data and control lines cannot be driven properly and the system may fail to perform. Cable length restric- tions are as follows:	
			 No more than 15 instruments may be installed on the bus. Total cumulative cable length in meters may not exceed two times the number of bus instru- ments or 20 meters—whichever is less. 	
			NOTE For low EMI applications, the GPIB cable should be a fully shielded type, with well- grounded metal-shell connectors	
		GPIB Inter- connection	The only interconnection required for GPIB opera- tion is between the CW generator and the controller. This interconnection is via a standard GPIB cable. The ANRITSU Part number for such a cable is 2000-1, -2, or -4 (1, 2, or 4 meters in length).	
		Setting the GPIB Ad- dress	The default GPIB address is 5. If a different GPIB address is desired, it can be set from the front panel using the Configure GPIB Menu.	
			To change the GPIB address, first press the front panel main menu key labeled SYSTEM . The System Menu (shown on the following page) is displayed.	

Now press the menu soft-key **Config**. The System Configuration Menu (shown below) is displayed.

CW 🕅	2.000 000 000 0 GHz	Front Panel
		Rear Panel
∦Level		RF
L1	+0.00 dBm	GPIB
		Incr Menu
Reset	Config Setups Secu	ure [Selftest]

To go to the Configure GPIB menu from this menu, press the menu soft-key GPIB. The Configure GPIB Menu (shown below) is displayed.

Press the menu soft-key GPIB Address to change the current GPIB address of the CW generator. Enter a new address using the cursor control key or the data entry keypad and the terminator key

The new GPIB address will now appear on the display. The entry must be between 1 and 30 to be recognized as a valid GPIB address.

Selecting the Line Termi- nator	Data is delimited on the GPIB by either the carriage return (CR) ASCII character or both the carriage re- turn and line feed (CR/LF) ASCII characters. Which character is used depends upon the requirements of the system controller. Most modern controllers can use either CR or CR/LF, while many older control- lers require one or the other. Consult the controller's manual for its particular requirements.
	From the Configure GPIB Menu display, you can se- lect which GPIB terminator to use by pressing the menu soft-key Line Term. This menu soft-key tog- gles the GPIB terminator between CR and CR/LF. The current selection appears on the display.
Selecting the Interface Language	Series 680XXB Synthesized CW Generators can be remotely operated via the GPIB using one of two ex- ternal interface languages—Native or SCPI (Option 19). The Native interface language uses a set of 680XXB GPIB Product Specific commands to control the instrument; the SCPI interface language uses a set of the Standard Commands for Programmable Instruments commands to control the unit. The Configure GPIB Menu has an additional menu display. For instruments with Option 19, selection of which external interface language is to be used is made from this additional menu. From the Config- ure GPIB Menu display, you can access the addi- tional menu by pressing More. The additional Configure GPIB Menu (below) is displayed.

ECW	Config GPIB	Pwr Mtr Address
*Leve	Pwr Meter Address 13 Pwr Meter An ML4803 Language SCPI	Pwr Mtr Select Native SCPI
		Previous Menu

Press Native/SCPI to select the external interface language to be used. This menu soft-key toggles the language selection between Native and SCPI. The current selection appears on the display.

- **2-5** RACK MOUNTING KIT INSTALLATION The rack mounting kit (Option 1) contains a set of track slides (90° tilt capability), mounting ears, and front panel handles for mounting the CW generator in a standard 19-inch equipment rack. The following procedure provides instructions for installing the rack mounting hardware on to the instrument. Refer to Figures 2-2 and 2-3 during this procedure.
 - **Preliminary** Disconnect the power cord and any other cables from the instrument.
 - **Procedure** Install the rack mounting hardware as follows:
 - **Step 1** Using a Phillips screwdriver, remove the screws and the front handle assemblies from the instrument. (For instruments not having front handles, remove the screws and the front top and bottom feet from the instrument.) Retain the screws.
 - *Step 2* Remove the four feet from the rear of the instrument. Retain the screws.
 - **Step 3** Remove the screws and the carrying handle from the side handle cover. (The two screws fastening the carrying handle through the side handle cover to the chassis are accessable by lifting up the rubber covering at each end of the handle.)

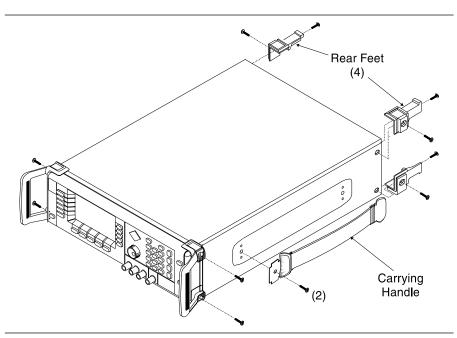


Figure 2-2. Front Handle, Feet, and Carrying Handle Removal

NOTE

The screws with green heads have
metric threads. When it becomes
necessary to replace any of these
screws, always use the exact re-
placement green-headed screws
(ANRITSU P/N 2000-560) to avoid
damage to the instrument.
-

- *Step 4* Remove the inner slide assemblies from the outer slide assemblies.
- **Step 5** Place the left side inner slide assembly onto the instrument case with the handle towards the front of the instrument (Figure 2-3).
- **Step 6** Insert two green-headed screws through the holes in the slide assembly behind the handle and into the metric tapped holes in the side of the instrument.
- **Step 7** Insert two green-headed screws through the holes near the rear of the slide assembly and into the metric tapped holes in the side of the instrument.
- **Step 8** Insert the two SAE threaded screws (removed from the feet) through the 90° tabs on the rear of the slide assembly and into the rear panel of the instrument.
- **Step 9** Using the Phillips screwdriver, tighten all screws holding the left side slide assembly to the instrument chassis.

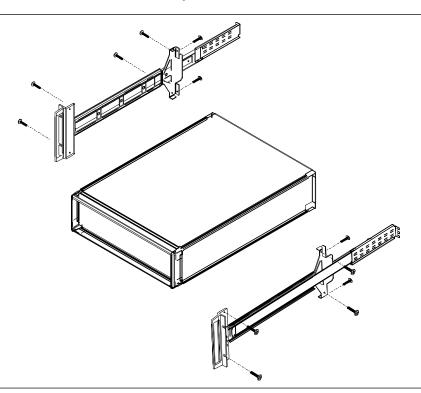


Figure 2-3. Rack Mounting Hardware Installation

Step 10	Place the right side inner slide assembly
	onto the instrument case with the handle
	towards the front of the instrument.

- **Step 11** Insert two green-headed screws through the holes in the slide assembly behind the handle and into the metric tapped holes in the side of the instrument.
- **Step 12** Insert two green-headed screws through the holes near the rear of the slide assembly and into the metric tapped holes in the side of the instrument.
- **Step 13** Insert the two SAE threaded screws (removed from the feet) through the 90° tabs on the rear of the slide assembly and into the rear panel of the instrument.
- **Step 14** Using the Phillips screwdriver, tighten all screws holding the right side slide assembly to the instrument chassis.
- *Step 15* With the appropriate hardware, install the outer slide assemblies onto the equipment rack.
- **Step 16** Lift the CW generator into position. Align the inner and outer slide assemblies and slide the instrument into the rack. Realign the hardware as needed for smooth operation.

WARNING

Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

A CAUTION
>18 kg
HEAVY WEIGHT

2-6	PREPARATION FOR STORAGE/SHIPMENT	The following pa for storage or shi	ragraphs give instructions for preparing the 680XXB ipment.
		Preparation for Storage	Preparing the CW generator for storage consists of cleaning the unit, packing the inside with moisture- absorbing desiccant crystals, and storing the unit in a temperature environment that is maintained be- tween -40° C and $+75^{\circ}$ C (-40° F to $+167^{\circ}$ F).
		Preparation for Shipment	To provide maximum protection against damage in transit, the CW generator should be repackaged in the original shipping container. If this container is no longer available and the unit is being returned to ANRITSU for repair, advise ANRITSU Customer Service; they will send a new shipping container free of charge. In the event neither of these two op- tions is possible, instructions for packaging and shipment are given below.
			<i>Use a Suitable Container.</i> Obtain a corrugated cardboard carton with a 275- pound test strength. This carton should have inside

pound test strength. This carton should have inside dimensions of no less than six inches larger than the unit dimensions to allow for cushioning.

Protect the Instrument.

Surround the unit with polyethylene sheeting to protect the finish.

Cushion the Instrument.

Cushion the instrument on all sides by tightly packing dunnage or urethane foam between the carton and the unit. Provide at least three inches of dunnage on all sides.

Seal the Container.

Seal the carton by using either shipping tape or an industrial stapler.

Address the Container.

If the instrument is being returned to ANRITSU for service, mark the address of the appropriate ANRITSU service center (Table 2-1) and your return address on the carton in one or more prominent locations.

ANRITSU SERVICE CENTERS

Table 2-1. ANRITSU Service Centers

UNITED STATES

ANRITSU COMPANY 685 Jarvis Drive Morgan Hill, CA 95037-2809 Telephone: (408) 776-8300 FAX: 408-776-1744

ANRITSU COMPANY 10 New Maple Ave., Unit 305 Pine Brook, NJ 07058 Telephone: (201) 227-8999 FAX: 201-575-0092

ANRITSU COMPANY 1155 E. Collins Blvd Richardson, TX 75081 Telephone: 1-800-ANRITSU FAX: 972-671-1877

AUSTRALIA

ANRITSU PTY. LTD. Unit 3, 170 Foster Road Mt Waverley, VIC 3148 Australia Telephone: 03-9558-8177 Fax: 03-9588-8255

BRAZIL

ANRITSU ELECTRONICA LTDA. Praia de Botafogo 440, Sala 2401 CEP 22250-040,Rio de Janeiro,RJ, Brasil Telephone: 021-28-69-141 Fax: 021-53-71-456

CANADA

ANRITSU INSTRUMENTS LTD. 215 Stafford Road, Unit 102 Nepean, Ontario K2H 9C1 Telephone: (613) 828-4090 FAX: (613) 828-5400

CHINA

INSTRIMPEX ANRITSU PRODUCT SERVICE STATION NO. 1515 Beijing Fortune Building 5 Dong San Huan Bei Lu Chao Yang-qu, Beijing, China Telephone: 10-6590-9230 FAX: 10-6590-9235

FRANCE

ANRITSU S.A 9 Avenue du Quebec Zone de Courtaboeuf 91951 Les Ulis Cedex Telephone: 016-44-66-546 FAX: 016-44-61-065

GERMANY

ANRITSU GmbH Grafenberger Allee 54-56 D-40237 Dusseldorf Germany Telephone: 0211-68550 FAX: 0211-685555

INDIA

MEERA AGENCIES (P) LTD. A-23 Hauz Khas New Delhi 110 016 Telephone: 011-685-3959 FAX: 011-686-6720

ISRAEL

TECH-CENT, LTD Haarad St. No. 7, Ramat Haahayal Tel-Aviv 69701 Telephone: (03) 64-78-563 FAX: (03) 64-78-334

ITALY

ANRITSU Sp.A Rome Office Via E. Vittorini, 129 00144 Roma EUR Telephone: (06) 50-22-666 FAX: (06) 50-22-4252

JAPAN

ANRITSU CORPORATION 1800 Onna Atsugi-shi Kanagawa-Prf. 243 Japan Telephone: 0462-23-1111 FAX: 0462-25-8379

KOREA

ANRITSU CORPORATION LTD. #901 Daeo Bldg. 26-5 Yeoido Dong, Youngdeungpo Seoul Korea 150010 Telephone: 02-782-7156 FAX: 02-782-4590

SINGAPORE

ANRITSU (SINGAPORE) PTE LTD 3 Shenton Way #24-03 Shenton House Singapore 0106 Telephone: 2265206 FAX: 2265207

SOUTH AFRICA

ETESCSA 12 Surrey Square Office Park 330 Surrey Avenue Ferndale, Randburt, 2194 South Africa Telephone: 011-27-11-787-7200 Fax: 011-27-11-7887-0446

SWEDEN

ANRITSU AB Botvid Center S-15 85 Stockholm, Sweden Telephone: (08) 534-717-00 FAX: (08)534-717-30

TAIWAN

ANRITSU CO., LTD. 8F, No. 96, Section 3 Chien Kuo N. Road Taipei, Taiwan, R.O.C. Telephone: (02) 515-6050 FAX: (02) 509-5519

UNITED KINGDOM

ANRITSU LTD. 200 Capability Green Luton, Bedfordshire LU1 3LU, England Telephone: 015-82-41-88-53 FAX: 015-82-31-303

Chapter 3 Local (Front Panel) Operation

Table of Contents

3-1	INTRODUCTION
3-2	FRONT PANEL LAYOUT.3-6Line Key3-6Data Display Area3-6Data Entry Area3-7RF Output Control Key3-7Connectors3-7
3-3	DATA DISPLAY AREA
3-4	DATA ENTRY AREA
3-5	INSTRUMENT START-UP3-14Powering Up the 680XXB.3-14Start-Up Display3-14Standby Operation3-14Self-Testing the 680XXB3-15Resetting to Default Parameters3-15
3-6	ENTERING DATA3-18Opening the Parameter3-18Editing the Current Value3-19Entering a New Value3-20
3-7	CW FREQUENCY OPERATION3-21Selecting CW Mode3-21Selecting a CW Frequency3-21Selecting a Power Level3-23CW Ramp3-24

3-8	SWEEP FREQUENCY OPERATION	-25
	Selecting Step Sweep Mode	-26
	Selecting a Sweep Trigger	-27
	Selecting Manual Sweep Mode	
	Selecting a Sweep Range 3 Selecting a Power Level 3	
	Frequency Markers.	
	Selecting Alternate Sweep Mode	
3-9	FIXED POWER LEVEL OPERATION	-37
	Selecting Fixed Power Level Mode	-37
	Selecting a Power Level	
	Level Offset	-40
3-10	POWER LEVEL SWEEP OPERATION	-41
	Selecting CW Power Sweep Mode	-41
	Setting CW Power Sweep Step Size	
	and Dwell Time	
	Selecting a CW Power Sweep Trigger 3	
	Selecting a Power Level Sweep Range 3	
	Selecting a Sweep Frequency / Step Power Mode 3- Setting Power Level Step Size	-46 -47
3-11	LEVELING OPERATIONS	
5-11		
	Selecting a Leveling Mode 3- Attenuator Decoupling 3-	
	Attenuator Decoupring	
	User Level Calibration	
3-12	SYSTEM CONFIGURATION	
0 12	Configuring the Front Panel	
		-63
	Configuring the RF.	
		-65
	Setting Increment Sizes	-67
3-13	SAVING/RECALLING INSTRUMENT SETUPS . 3-	-68
	Saving Setups	-68
	Recalling Setups	-68
	Erasing Stored Setups	-69

3-14	SECURE OPERATION	3-70
3-15	REFERENCE OSCILLATOR CALIBRATION	3-71

Chapter 3 Local (Front Panel) Operation

3-1 INTRODUCTION

This chapter provides information and instructions on operating the Series 680XXB Synthesized CW Generator using the front panel controls. It contains the following:

- Illustrations and diagrams of the front panel, data display area, and data entry area that identify and describe all front panel controls, inputs, and outputs.
- □ An annotated diagram of the menu display format showing where the current frequency and power level information is displayed.
- □ Instructions for performing CW generator operations; namely, frequency and frequency sweep, fixed power level and power level sweep, leveling, system configuration, and saving and recalling instrument setups.

3-2 front panel layout

The 680XXB front panel is divided into two main areas—the data display area and the data entry area. The following paragraphs provide a brief description of the front panel controls, inputs, outputs, and data display and data entry areas as shown in Figure 3-1. Detailed descriptions of the data display and data entry areas are contained in paragraphs 3-3 and 3-4.

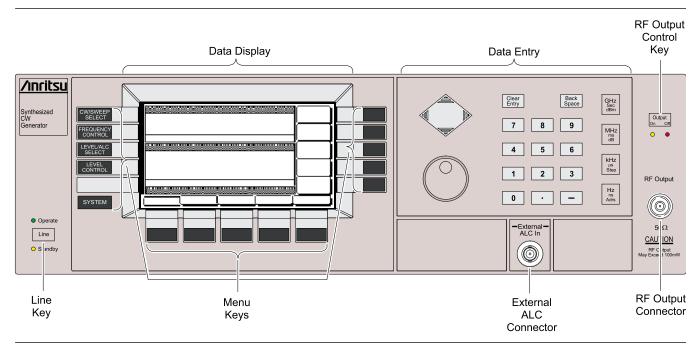


Figure 3-1. Front Panel, 680XXB Synthesized CW Generator

Data DisplayThe data display area consists of the data display and the surrounding menu keys.Data Display
Data Display
The data display provides information about the current status of the 680XXB in a menu display format. This information includes the operating mode of the instrument and the value of the active frequency and power level parameters. Menu Keys Menu keys provide for selecting the operating mode,
mode of the instrument and the value o frequency and power level parameters. Menu Keys

Data Entry Area	The data entry area consists of data entry keys and controls that provide for (1) changing values for each 680XXB parameter, and (2) terminating the value entry and assigning the appropriate units (GHz, MHz, dBm, etc.).
RF Output Control Key	The RF output control key provides for turning the RF output power on and off. OUTPUT OFF is indi- cated by a red LED; OUTPUT ON by a yellow LED.
Connectors	The front panel has both an input connector and an output connector.
	External ALC Connector The external ALC connector provides for leveling the RF output signal externally using either a detec- tor or a power meter.
	RF Output Connector The RF output connector provides RF output from a 50Ω source.
	NOTE

To prevent power losses due to an impedance mismatch, the mating connector and cable should also be rated at 50Ω . **3-3** DATA DISPLAY AREA The data display area consists of the data display and the surrounding menu keys. The data display is a dot matrix liquid crystal display (LCD) that provides 16 lines of 40 characters each. Information is presented on the LCD in the form of menu displays. The menu keys either select the main menu to be displayed, select a sub-menu of the current menu display, or control a function on the current menu display.

Figure 3-2 shows the format of the menu display and identifies the display elements. It also shows the placement of the menu keys in relation to the display. The paragraphs that follow provide descriptions of the menu display elements and the menu keys.

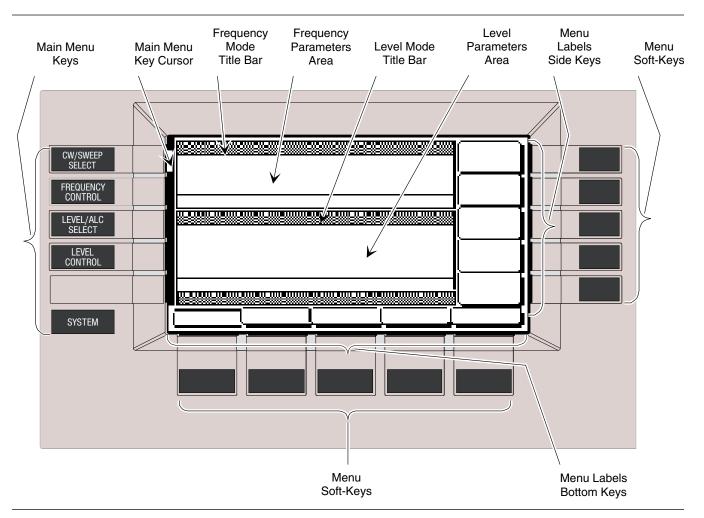


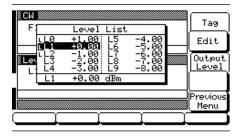
Figure 3-2. Front Panel Data Display Area

Menu Display Format The menu display is divided into specific areas that show the frequency and power level information for the current CW generator setup. Menu labels for the current menu's soft-keys appear along the bottom and right side of the display.

Title Bars

A shaded title bar identifies each parameter area. Mode information is displayed in reverse video on the title bars.

- □ **Frequency Mode Title Bar**—The current frequency mode (CW, Step Sweep, or Manual Sweep) appears on the left side of the bar. In the step sweep mode, the type of sweep trigger (Auto, External, or Single) appears on the right side.
- □ **Level Mode Title Bar**—The current power level mode (Level or Level Sweep) appears on the left side of the bar. In a level sweep mode, the type of sweep trigger (Auto, External, or Single) appears on the right side of the bar.


Parameter Areas

The parameter areas show the frequency and power level information for the current 680XXB setup.

- □ **Frequency Parameters Area**—The current CW frequency in GHz, or the start and stop frequencies of the current frequency sweep range in GHz are displayed in this area.
- Power Level Parameters Area—The current power level in dBm, or the start and stop levels of the current power level sweep range in dBm are displayed in this area.

Menu Labels

Each of the menu soft-keys, located below and to the right of the display, has a corresponding menu label area on the display. These labels identify the function of the soft-keys for the current menu display. In most cases, when a menu soft-key is pressed, its menu label changes appearance to visually show the On/Off condition.

Menu Keys

SYSTEM

Window Display

A window display that overlays a portion of the current menu display is used to (1) show the parameter being edited; (2) display selection lists of preset frequencies, power levels, markers, etc.; (3) show the system configuration choices and current selections; or (4) show self-test error messages. A typical window display is shown on the left.

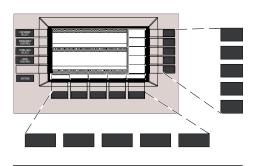
As shown in Figure 3-2, there are two types of menu keys that surround the data display—main menu keys and menu soft-keys. The main menu keys are positioned to the left of the data display. The menu soft-keys are located at the bottom and to the right of the data display.

Main Menu Keys

Each of the main menu keys, shown on the left, selects a main (top-level) menu display. These menus let you select the operating mode, operating parameters, and configuration of the instrument. A brief functional description of each main menu follows.

- □ **CW/SWEEP SELECT**—This menu lets you select between CW, Step, and Manual Sweep frequency modes.
- □ **FREQUENCY CONTROL**—In CW frequency mode, this menu lets you select the CW frequency parameter (F0-F9 or M-M9) to use. In the Step or Manual Sweep frequency mode, this menu lets you select the sweep range parameters (Full, F1-F2, F3-F4, F5-dF, or F6-dF) to use. In Step Sweep frequency mode, the menu also lets you select up to 20 independent, pre-settable frequency markers.
- LEVEL/ALC SELECT—This menu lets you select power level and ALC modes (Level, Level Sweep, Level Offset, ALC on or off, internal or external ALC, ALC/attenuator decoupling, ALC slope, and user level flatness correction).
- LEVEL CONTROL—In Level mode, this menu lets you select the level parameter (L0-L9) to use for a CW frequency or a frequency sweep. In the Level Sweep mode, this menu lets you select the power sweep range parameters to use.

□ **SYSTEM**—This menu provides you with access to sub-menus that let you (1) reset the instrument to factory-selected default values; (2) configure the front panel, rear panel, RF, and GPIB; (3) set incremental sizes for editing frequency, power level, and time parameters; (4) set the reference multiplier for frequency scaling; (5) save or recall instrument setups; (6) disable front panel data display; and (7) perform instrument self-test.


Main Menu Key Cursor

With the exception of the **SYSTEM** key, when any main menu key is pressed, the main menu that is displayed contains a cursor positioned adjacent to the pressed key (Figure 3-2). The cursor is displayed on all sub-menus of the current menu until a different main menu key is pressed.

When the **SYSTEM** key is pressed, the System menu is displayed. The System menu and its submenus do *not* contain a main menu key cursor.

Menu Soft-Keys

As shown on the left, five menu soft-keys are located below the data display and five menu soft-keys are located to the right of the data display. In general, the menu soft-keys located below the data display select a sub-menu of the current main (top-level) menu display; the menu soft-keys located to the right of the data display either control a function on the current menu display or select an additional sub-menu. Menu labels that identify the current function of each soft-key are shown on the menu display adjacent to the soft-keys.

3-4 DATA ENTRY AREA

The value of a selected 680XXB parameter can be changed using the rotary data knob and/or keys of the data entry area. Each element of the data entry area is identified in Figure 3-3 and described in the following paragraphs.

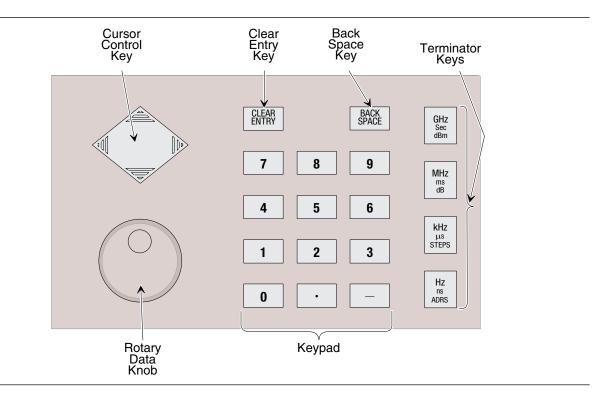


Figure 3-3. Front Panel Data Entry Area

Cursor Control Key

In general, this diamond-shaped key controls the movement of the cursor on the display. When a parameter is opened for editing, a cursor appears under the open parameter. Each time the < or > pad is pressed, the cursor moves left or right by one digit. The \land or \lor pad can then be used to increase or decrease the value of the parameter. The unit size of the increase or decrease that occurs each time the \land or \lor pad is pressed is determined by the cursor position.

In addition, when editing frequency, power level, and time parameters, the incremental size can be set to a specific value using a system configuration sub-menu. Once set and activated, each time the \land or \lor pad is pressed, the parameter's value increases or decreases by the set amount.

Rotary Data Knob

The rotary data knob can be used to change the value of a parameter that is open for editing. The cursor is moved under the open parameter using the < and > pads of the cursor control key. Then, by slowly turning the knob clockwise or counterclockwise the value of the parameter is increased or decreased by the unit size. The unit size is determined by the cursor placement. Turning the knob rapidly changes the value of the parameter in larger steps.

When editing frequency, power level, and time parameters, the incremental size can be set to a specific value using a system configuration sub-menu. Once set and activated, each time the knob is turned clockwise or counter-clockwise, the parameter's value increases or decreases by the set amount.

KEYPAD

The numeric keypad provides for entering frequency, power level, time, and number-of-steps parameters and GPIB address values. The "–" key functions as a "change sign" key during any keypad entry.

CLEAR ENTRY Key

When a parameter is open for editing, the CLEAR ENTRY key is used to clear the parameter entry.

BACK SPACE Key

The BACK SPACE key is used to correct keypad data entry errors by deleting the last number, "–", or decimal point entered.

Terminator Keys

The terminator keys are used to terminate keypad data entries and change the parameter values in memory. If the entered value is outside the allowable range of the open parameter, an error message will be displayed along with an audible "beep". The terminator keys are as follows:

> GHz / Sec / dBm MHz / ms / dB kHz / µs / STEPS Hz / ns / ADRS

3-5 INSTRUMENT START-UP Now that you have familiarized yourself with the layout of the CW generator's front panel controls and data display, you are ready to be gin operating the instrument. Begin by powering it up.

Standby

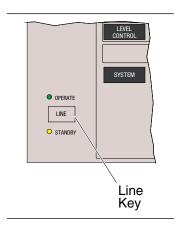
Operation

Powering Up
the 680XXBConnect the 680XXB to an ac power source by fol-
lowing the procedure in the Installation chapter.
This automatically places the instrument in opera-
tion (front panel OPERATE LED on).

Start-UpDuring power up, the start-up display (below) appears on the data display. It provides you with the revision level of the installed firmware and informs you that the instrument is loading programs. The start-up display remains displayed until the CW generator has loaded all programs.

Upon completion of power up, the 680XXB returns to the exact configuration it was in when last turned off.

Whenever the CW generator is not being used, it should be left connected to the power source and placed in standby. Standby operation provides power to keep the internal time base at operating temperature. This assures specified frequency accuracy and stability when the 680XXB is place in operation.


NOTE

During standby operation, the fan runs continuously.

Press LINE to switch the 680XXB from OPERATE (green LED on) to STANDBY (orange LED on).

NOTE

When switching to operate from standby, allow at least a *30-minute warmup* before beginning CW generator operations.

Self-Testing the 680XXB The 680XXB firmware includes internal diagnostics that self-test the instrument. These self-test diagnostics perform a brief go/no-go test of most of the PCBs and other internal assemblies. If the CW generator fails self-test, an error message is displayed on the data display. Error messages and descriptions are listed in the Operator Maintenance chapter of this manual.

CAUTION

During self-test with RF OUTPUT set to ON, the output power level is set to 0 dBm. Always disconnect sensitive equipment from the unit before performing self-test.

> You can perform a self-test of the CW generator at any time during normal operation. To perform a self-test from any menu, press **SYSTEM**. Then, when the System Menu (shown below) is displayed, press Selftest.

CW F1	2.000 0	00 000 0) GHz	
Level	+0.00 dB	in .		Í
Reset	(Config)	(Setups)	Secure	Selftest)

Resetting to Default Parameters You can reset the 680XXB to the factory-selected default parameter values at any time during normal operation. Table 3-1, page 3-14, lists the default parameters for all 680XXB models.

NOTE

Resetting the instrument clears the setup presently in place. If these parameter values are needed for future testing, save them as a stored setup before resetting the CW generator. (For information on saving/recalling instrument setups, refer to paragraph 3-13.)

To reset the CW generator, press **SYSTEM**. When the System Menu (above) is displayed, press **Reset**.

680XXB		FREQUENCY PARAMETERS (GHz)																			
MODEL NUMBER	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	MO	M1	M2	M3	M4	M5	M6	M7	M8	M9	F
68037B	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68045B	3.5	2.2	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68047B	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68053B	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68055B	3.5	2.2	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68059B	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68063B	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68065B	3.5	2.2	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68069B	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68075B	3.5	2.2	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68077B	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68085B	3.5	2.2	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68087B	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68095B	3.5	2.2	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0

Table 3-1. Reset (Default) Paramenters (1 of 2)

680XXB MODEL	POWER LEVEL PARAMETERS (dBm)												
NUMBER	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9			
68037B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68045B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68047B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68053B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68055B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68059B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			
68063B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0			

680XXB MODEL				POWER	LEVEL PA	RAMETER	S (dBm)			
NUMBER	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9
68065B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68069B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68075B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68077B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68085B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68087B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68095B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0

Table 3-1. Reset (Default) Paramenters (2 of 2)

680XXB	SWEEP	STEP S	STEP SWEEP LEVEL SWEEP						
MODEL NUMBER	TIME	DWELL TIME	NUMBER OF STEPS	DWELL TIME	NUMBER OF STEPS	LEVEL OFFSET			
68037B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68045B	50 ms	1 ms	50	0.0 dB					
68047B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68053B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68055B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68059B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68063B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68065B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68069B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68075B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68077B	50 ms	1 ms	50	50 ms	50	0.0 dB			
68085B	50 ms	1 ms	50	50 ms	50	0.0 dB			

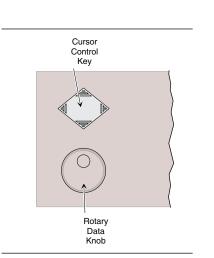
3-6 ENTERING DATA

Before proceeding to the various modes of CW generator operation, you need to know how to enter data from the front panel. Entering data refers to changing a parameter's value by editing its current value or entering a new value to replace the current value. The following instructions describe how to (1) open a parameter, (2) edit its current value, and (3) enter a new value.

A typical 680XXB menu display (below) is used throughout the data entry instructions. At this menu display, you can edit both the CW frequency and the output power level parameters.

F1 :	2.000 000 000 0 GHz	Edit F1
Level I	0.00 dBm	Master Slave Edit L1
	Step [Manual]	CW Ramp Menu

If you wish to follow along on your 680XXB, you can obtain this same menu display by resetting your instrument (press **SYSTEM**, then press Reset).


Opening the Parameter

In order for the value of a parameter to be changed, the parameter must first be opened.

To open the frequency parameter from the above menu, press Edit F1. The menu display now changes to show that the menu soft-key Edit F1 has been pressed and that the frequency parameter has been opened. An open parameter is indicated by placing it in a window with a movable cursor under its digits.

CW F1 2.000 000 000 0 GHz	Edit F1
Level L1 +0.00 dBm	Master Slave Edit L1
CW (Step [Manual])	CW Ramp Menu

Only one parameter can be open at a time. If you press Edit L1, then the frequency parameter will close and the power level parameter will open.

Editing the Current Value To change the current value of a parameter by editing, you can use either the cursor control key or the rotary data knob.

Using the Cursor Control Key

Using the < and > pads of the cursor control key, move the cursor under the digit where you want to begin editing. Then increase or decrease the value of the parameter using the \land or \lor pad of the cursor control key. The unit size of the increase or decrease that occurs each time the \land or \lor pad is pressed is determined by the cursor position.

Using the Rotary Data Knob

You can also increase or decrease the value of the parameter using the rotary data knob. Once you have positioned the cursor under the digit where you want to begin editing, slowly turn the knob clockwise or counter-clockwise to increase or decrease the value of the parameter by the unit size. Turning the knob rapidly changes the value of the parameter in larger steps.

Using a Set Increment

When editing frequency, power level, and time parameters, you can increase or decrease the parameter's value by a set amount each time the \land or \lor pad is pressed or the rotary data knob is turned clockwise or counter-clockwise. For instructions on setting the increment size, refer to paragraph 3-12.

Now, try changing the current value of the CW frequency displayed on your 680XXB from 2.0 GHz to 6.395 GHz. Use both the cursor control key's \land and \lor pads and the rotary data knob to make the value changes. When you are finished, your menu display should look like the example below.

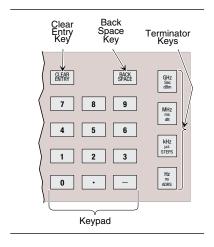
CW	6.395 000 000 0 GHz	Edit F1
Level	+0.00 dBm	Master Slave Edit L1
		CW Ramp Menu

To close the open parameter when you are finished editing, press Edit F1 or make another menu selection.

Entering a New Value

To change the current value of a parameter by entering a new value for the parameter, use the data entry keypad and termination keys.

As soon as you press one of the keys on the data entry keypad, the current parameter display clears for entry of a new value. Enter the new value for the parameter, then press the appropriate terminator key to store it in memory. If the entered value is outside the allowable range of the open parameter, the entry is not accepted and the previous value for the parameter is displayed.


NOTE

A frequency entry may be terminated in GHz, MHz, kHz, or Hz; however, it is always displayed on the data display in GHz. A time entry may be terminated in Sec, ms, μ s, or ns; however it is always displayed on the data display in Sec.

If you make an error during data entry, either (1) press BACK SPACE to delete the entry one character at a time starting from the last character entered, or (2) delete the entire entry by pressing CLEAR ENTRY. Then, re-enter the correct value.

Now, try entering a new value for the CW frequency displayed on your 680XXB using the data entry keypad and termination keys.

To close the open parameter when you are finished entering data, press Edit F1 or make another menu selection.

3-7 CW FREQUENCY OPERATION

One of the CW generator's major functions is to produce discrete CW frequencies across the frequency range of the instrument. The following paragraphs describe how to place the 680XXB in the CW frequency mode, select a CW frequency and power level for output, and activate the CW ramp. Use the CW Frequency Mode menu map (Chapter 4, Figure 4-2) to follow the menu sequences.

Selecting CWTo place the 680XXB in the CW frequency mode,
press the main menu key

At the resulting menu display, press CW. The CW Menu (below) is displayed.

CW F1 2.000 000 000 0 GHz	Edit F1
Level	(Master Slave
	Edit L1
	CW Ramp Menu
CW Step Manual	

NOTE

When the CW generator is reset, it automatically comes up operating in the CW frequency mode.

Selecting a CW Frequency There are several ways to select a CW frequency for output. You can (1) edit the current frequency, (2) enter a new frequency, or (3) select one of the 20 preset frequency parameters.

Editing the Current Frequency

Press Edit F1 to open the frequency parameter, then edit the current CW frequency using the cursor control key or the rotary data knob. To close the open frequency parameter, press Edit F1 or make another menu selection.

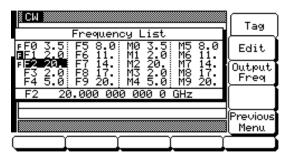
Entering a New Frequency

Press Edit F1 to open the frequency parameter, then enter the new CW frequency using the keypad and appropriate terminator key. To close the open frequency parameter, press Edit F1 or make another menu selection.

NOTE Refer to Chapter 7, paragraph 7-2 for Master-Slave mode operating

i										n																		T									0	,	
	 -	-	-	-	-	-	-	-	-	• •	• •	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•

Selecting a Preset Frequency


To select one of the preset frequencies for output, press the main menu key

The CW Frequency Control menu, shown below, is displayed. This menu lets you (1) select preset frequencies F0, F1, F2, M1, or M2 for output, (2) go to the frequency list menu, or (3) go to the tagged frequencies menu.

CW F1 2.000 000 000 0 GHz	Edit F1
	(Freqs List
Level	TagFreq Menu
	Edit L1
F0 F1 F2 M1	M2)

Frequency List–To go to the Frequency List menu (below), press Freqs List. This menu lets you tag, edit, or output a frequency from the list.

Use the cursor control key to select a frequency from the frequency list. The selected frequency is highlighted in reverse video and displayed in full below the frequency list.

Press Tag to mark a selected frequency (place an F in front of it). If the frequency is already tagged, pressing Tag will untag it (remove the F). Tagging selected frequencies lets you quickly switch between them using the scan keys of the Tagged Frequencies menu.

Press Edit to edit the selected frequency or enter a new frequency.

Press Output Freq to output the selected frequency. This frequency is output until you select another frequency from the list and press Output Freq . On the frequency list, the output frequency selection is marked by a black square or, if tagged, an **F** highlighted in reverse video.

When you are finished, press **Previous Menu** to return to the CW Frequency Control menu display.

Scanning Tagged Frequencies–To go to the Tagged Frequencies menu (below) from the CW Frequency Control menu, press Tag Freq Menu.

F0	3.500 000 000	0 GHz	(F2) Scan Up Scan Dn
≹Level L1	+0.00 dBm		(F8) Edit
FØ	7 F1 7 F2) M1)	Previous Menu M2

This menu lets you select the tagged frequencies for output using the Scan Up and Scan Dn keys.

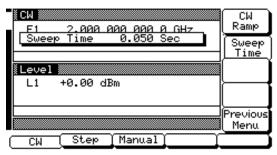
Return to the CW Frequency Control menu by pressing Previous Menu.

Selecting a Power Level While in the CW frequency mode, you can edit the current CW frequency output power level or enter a new output power level.

Editing the Current Power Level

Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or rotary data knob. To close the open power level parameter, press Edit L1 or make another menu selection.

Entering a New Power Level


Press Edit L1 to open the power level parameter, then enter the new power level using the keypad and appropriate terminator key. To close the open power level parameter, press Edit L1 or make another menu selection.

NOTE

You can also select any of the preset power levels or a power level sweep for a CW frequency. For instructions, refer to paragraphs 3-9 (Fixed Power Level Operation) and 3-10 (Power Level Sweep Operation).

CW Ramp When active, the 680XXB's CW ramp provides a repetitive 0V to 10V ramp output to the rear panel HORIZ OUT BNC connector and AUX I/O connector. The CW ramp is used to drive a scalar analyzer display.

To go to the CW Ramp menu (below) from the CW menu, press CW Ramp Menu.

This menu lets you set the ramp speed and turn the CW ramp on/off.

To set ramp speed, press Sweep Time . The sweep time parameter opens for editing. Edit the current sweep time using the cursor control key or rotary data knob or enter a new sweep time using the key pad and appropriate termination key. The sweep time entered must be in the range of 30 ms to 99 sec. To close the open sweep time parameter when you are done, press Sweep Time or make another menu selection.

Press CW Ramp to turn the CW ramp on. While the CW ramp is on, the message **CW Ramp** appears on the right side of frequency title bar on all CW menus.

Press Previous Menu to return to the CW menu.

3-8 SWEEP FREQUENCY OPERATION

The CW generator can generate broad (full range) and narrow band sweeps across the frequency range of the instrument. The 680XXB has two sweep frequency modes—step sweep and manual sweep. The following paragraphs describe how to select each sweep frequency mode, a sweep range, an output power level, a sweep trigger, and frequency markers. Use the Step Sweep and Manual Sweep Frequency Mode menu maps (Chapter 4, Figures 4-3 and 4-4) to follow the menu sequences.

Selecting Step Sweep Mode In step sweep frequency mode, the output frequency changes in discrete, synthesized steps between selected start and stop frequencies. Step sweeps can be from a high frequency to a low frequency and vice versa. The step size or number of steps between the start and stop frequencies and the dwell time-perstep are controllable from a step sweep menu.

To place the 680XXB in step sweep frequency mode, press the main menu key

At the resulting menu display, press **Step**. The Step Sweep Menu (below) is then displayed.

Step Auto F1 2.000 000 000 GHz F2 20.000 000 000 0 Hz	Edit F1 Edit F2
Level L1 +0.00 dBm	Sweep Ramp Edit L1
CW Step (Manual)	Alt Swp Menu

This menu lets you perform the following:

- Select a sweep range (edit the sweep start and stop frequency parameters).
- □ Go to the sweep ramp menu (set the dwell time-per-step, the step size or number of steps, and select a sweep trigger).
- **Goldstate** Select an output power level for the sweep.
- **Go to the alternate sweep menu.**

Setting Step Size and Dwell Time

There are two ways to set the size of each step of the step sweep—set the step size or set the number of steps. The step size range is 1 kHz to the full frequency range of the CW generator (0.1 Hz to full frequency range with Option 11); the number of steps range is 1 to 10,000. The dwell time-per-step of the step sweep can be set for any time in the range of 1 ms to 99 sec. The step size and dwell time-per-step parameters are set from the step sweep ramp menu.

To go to the Step Sweep Ramp menu (shown below) from the Step Sweep menu, press Sweep Ramp.

<mark>∦Step</mark> F1 F2	Sweep Auto 2.000 000 000 0 GHz 20.000 000 000 0	Dwell Time
F2	20.000 000 000 0	Step Size
Level	+0.00 dBm	Num of Steps
	78.88 dbii	Trigger Menu
		Previous Menu
(CW	Step (Manual)	

This menu lets you set the dwell time, the step size, the number of steps, and go to the trigger menu.

Press Dwell Time to open the dwell time-per-step parameter.

Press Step Size to open the step size parameter.

Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or the rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or make another menu selection.

To go to the Step Sweep Trigger menu from this menu, press Trigger Menu. Sweep trigger is described on the next page.

Press Previous Menu to return to the Step Sweep menu.

RANGE

This error message is displayed when (1) the step size value entered is greater than the sweep range or (2) the number of steps entered results in a step size of less than 1 kHz (0.1 Hz with Option 11). Entering a valid step size will clear the error.

Selecting a Sweep Trigger The 680XXB provides sweep triggering for step frequency sweep and CW power sweep. The CW generator has three modes of sweep triggering, each selectable from the trigger menu. The following is a description of each mode.

- Auto (Automatic)-The sweep continually sweeps from its start frequency or power level to its stop frequency or power level with optimal retrace time.
- □ **External**-The sweep recurs when triggered by an external TTL-compatible clock pulse to the rear panel AUX I/O connector.
- □ **Single**-A single sweep starts when the trigger key is pressed. If a sweep is in progress when the key is pressed, it aborts and resets.

To go to the Step Sweep Trigger menu (below) from the Step Sweep Ramp menu, press Trigger Menu.

Step Auto F1 2.000 000 000 GHz F2 20.000 000 000 0 GHz	Auto External
Level L1 +0.00 dBm	Single
	Previous Menu
CW [Analog] Step [Manual]	

To select a sweep trigger mode, press its menu softkey. A message showing the sweep trigger mode selected appears on the right side of frequency title bar. When you are finished, press **Previous Menu** to return to the Step Sweep Ramp menu.

If you select the single sweep trigger mode, the menu display adds the menu soft-key Trig. Pressing Trig starts a single sweep. If a single sweep is in progress, pressing Trig causes the sweep to abort and reset.

Step F1 F2	Sweep Single 2.000 000 000 0 GHz 20.000 000 000 0 GHz	Auto
FŽ	20.000 000 000 0	External
Level	+0.00 dBm	Single
	-0.00 GBM	Trig
		Previous Menu
(CM	Step Manual	

SWEEP FREQUENCY OPERATION

Selecting Manual Sweep Mode

In manual sweep frequency mode, the output frequency can be manually tuned in phase-locked steps between the selected start and stop frequencies using the rotary data knob. As the knob is turned, the current output frequency is displayed on the data display as Fm. The step size or number of steps between the start and stop frequencies are controllable from the manual sweep menu.

To place the 680XXB in manual sweep frequency mode, press the main menu key

At the resulting menu display, press Manual . The Manual Sweep menu (below) is then displayed.

∦Manua F1 F2	1 Sweep 2.000 000 000 0 GHz 20.000 000 000 0	Edit F1 Edit
Level	+0.00 dBm	F2 Step Size Num of Steps
	Step Manual	

This menu lets you perform the following:

- □ Select a sweep range (edit the start and stop frequency parameters).
- □ Set the step size or number of steps (previously described on page 3-24).

Selecting a Sweep Range

Selecting a sweep range involves choosing a start and a stop frequency for the frequency sweep. The sweep range selection process is identical for both the step and manual sweep frequency modes. There are several ways you can select a sweep range, including:

- □ Editing the current start and stop frequency parameter values.
- Entering new start and stop frequency parameter values.
- Selecting one of the preset sweep range parameters (F1-F2, F3-F4, F5-dF, or F6-dF).

Step Auto F1 2.000 000 000 0Hz F2 20.000 000 000 0	Edit F1 Edit F2
Level L1 +0.00 dBm	Sweep Ramp Edit L1
CW (Step [Manual]	Alt Swp Menu

Editing the Current Start / Stop Frequencies

To edit the current sweep range start by opening either the start or stop frequency parameter (in the display above, Edit F1 opens the start frequency parameter; Edit F2 opens the stop frequency parameter).

Edit the open frequency parameter using the cursor control key or the rotary data knob. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

Entering New Start / Stop Frequencies

To enter a new sweep range start by opening either the start or stop frequency parameter (press Edit F1 or Edit F2).

Enter a new frequency using the keypad and appropriate terminator key. When you are finished, close the open parameter by pressing its menu edit softkey or by making another menu selection.

RANGE

This error message is displayed when the dF value entered results in a sweep outside the range of the 680XXB. Entering a valid value will clear the error.

SWEEP FREQUENCY OPERATION

Selecting a Preset Sweep Range

There are four preset sweep range parameters, selectable in the step sweep and manual sweep frequency modes. The following is a description of each preset sweep range.

- □ **F1-F2**-provides a frequency sweep between the start frequency, F1, and the stop frequency, F2.
- □ **F3-F4**–provides a frequency sweep between the start frequency, F3, and the stop frequency, F4.
- □ **F5-dF**-provides a symmetrical frequency sweep about the center frequency, F5. The sweep width is determined by the dF frequency parameter.
- □ **F6-dF**-provides a symmetrical frequency sweep about the center frequency, F6. The sweep width is determined by the dF frequency parameter.

To select one of the preset sweep ranges from any sweep frequency mode menu, press the main menu key

The Sweep Frequency Control menu(below) is displayed.

∦Step F1 F2	Sweep 2.000 000 00 20.000 000 00	Aut 20 0 GHz 20 0	0 Edit F1
F2	20.000 000 0	30 0	Edit F2
<pre>%Level</pre>	10.00ID-:		Marker List
	+0.00 dBm		Edit L1
(Full	F1-F2 (F3-	F4 F5-dF	F) F6-dF

This menu lets you perform the following:

- Select a full range sweep (Fmin–Fmax) or one of the preset sweep ranges for the sweep frequency mode.
- □ Select the frequency parameters for each preset sweep range.
- **□** Select an output power level for the sweep.
- □ Go to the marker list menu (described on page 3-30).

	Setting a Preset Sweep Range –At the menu, se- lect the sweep range (F1-F2, F3-F4, F5-dF, or F6-dF) that you wish to set. The menu then displays the current frequency parameters for the selected sweep range. Now, use the menu edit soft-keys to open the frequency parameters for editing.
	Edit the current frequency parameters or enter new frequency parameter values for the sweep range. To close the open frequency parameter when you are finished, press its menu edit soft-key or make an- other menu selection.
	You can set all the preset sweep ranges in this manner.
Selecting a Power Level	While at the Sweep Frequency Control menu, you can edit the current output power level or enter a new output power level for the frequency sweep.
	Editing the Current Power Level Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or rotary data knob. To close the open power level parameter, press Edit L1 or make an- other menu selection.
	Entering a New Power Level Press Edit L1 to open the power level parameter, then enter the new power level using the keypad and appropriate terminator key. To close the open power level parameter, press Edit L1 or make an- other menu selection.

NOTE

You can also select any of the preset power levels for a frequency sweep or a power level step for a step sweep. For instructions, refer to paragraphs 3-9 (Fixed Power Level Operation) and 3-10 (Power Level Sweep Operation).

Frequency Markers

The CW generator provides up to 20 independent, pre-settable markers, F0-F9 and M0-M9, that can be used in the step sweep frequency mode for precise frequency identification. Marker frequency accuracy is the same as sweep frequency accuracy. The markers are visible on a CRT display.

The 680XXB generates video markers that produce a pulse on a CRT display at each marker frequency. The video marker is either a +5V or a -5V pulse at the rear panel AUX I/O connector. Pulse polarity is selectable from a system configuration menu.

To output markers during a sweep you must first select (tag) the marker frequencies from the Marker List menu, then turn on the marker output.

To go to the Marker List menu from a step sweep frequency menu, press

FREQUENCY
CONTROL

The Step Sweep Frequency Control menu (below) is displayed.

Step Sweep Auto F1 2.000 000 000 0 GHz F2 20.000 000 000 0	Edit F1
F2 20.000 000 000 0	Edit F2
Level L1 +0.00 dBm	Marker List
	Edit L1
Full F1-F2 F3-F4 F5-dF	F6-dF

To go to the Marker List menu from this menu, press Marker List . The Marker List menu, shown on the next page, is displayed. This menu lets you tag or edit marker list frequencies and turn the markers on/off.

Step Sweep Auto	
Marker List	Tag
mF0 3.5; F5 8.0; M0 3.5; M5 8.0 STAR F6 11. M1 2.0; M6 11.	Edit
mF2 20. mF7 14. M2 20. M7 14. F3 2.0 F8 17. M3 2.0 M8 17.	
F3 2.0 F8 17. M3 2.0 M8 17. F4 5.0 mF9 20. M4 5.0 M9 20.	
F1 2.000 000 000 0 GHz	Video
	Markers
	Previous
	Menu
Full] F1-F2 (F3-F4) F5-dF)	F6-dF)

Use the cursor control key to select a frequency parameter from the marker list. The selected frequency parameter is highlighted in reverse video and displayed in full below the marker list.

Editing a Marker List Frequency

If you want to change a selected marker list frequency parameter's value, press Edit to open the frequency parameter, then edit the current frequency or enter a new frequency.

Tagging a Marker List Frequency

Only frequencies on the marker list that have been tagged can be output as markers during a sweep. Press Tag to tag a selected frequency parameter (place an m in front of it). If a frequency parameter is already tagged, pressing Tag will untag it (remove the m).

Activating Markers

Press Video Markers to output the tagged marker frequencies as video markers during a step sweep. Video markers will be displayed on the CRT for all tagged marker frequencies that are within the sweep frequency range.

To turn the markers off, press Video Markers again.

Press Previous Menu to return to the Sweep Frequency Control menu.

Selecting Al-
ternateIn al
tor'sSweep Modeany t

In alternate sweep frequency mode, the CW generator's output frequency sweeps alternately between any two sweep ranges in step sweep.

To select the alternate sweep mode, start with the Step Sweep Menu display (below).

Step Auto F1 2.000 000 000 0 Hz F2 20.000 000 000 0 Hz	Edit F1
F2 20.000 000 000 0	Edit F2
Level	(Sweep Ramp
LI +0.00 dBm	Edit L1
	Alt Swp Menu
CW Step Manual 1	

To go to the Alternate Sweep menu (below) from the Step Sweep menu, press Alt Swp Menu.

<mark>∦Step</mark> S F1 F2	Weep Auto 2.000 000 000 0 GHz 20.000 000 000 0 GHz	Alt Sweep
F2	20.000 000 000 0	Alt Range
≹Level L1	+0.00 dBm	Alt Level
		Previous Menu
CW) Step (Manual)	

This menu lets you perform the following:

- **u** Turn the alternate sweep mode on/off.
- □ Go to the alternate range menu to select a sweep range for the alternate sweep.
- □ Go to the alternate level menu to select a power level for the alternate sweep.

Activating the Alternate Sweep

The Alternate Sweep menu soft-key Alt Sweep toggles the alternate sweep mode on and off.

Press Alt Sweep to turn on the alternate sweep mode. Notice that the Alternate Sweep menu (on the following page) changes to show that the alternate sweep is now active.

	Sweep 2.000 20.000		F3 F4	2.000 5.000	Auto GHz	Alt <u>Sweep</u> Alt Range
≹Leve L1	1 +0.00	dBm	L2	-1.00	dBm	Alt Level
) st) ae	Man	ualĺ		Previous Menu

Now, press Previous Menu to return to the Step Sweep Menu display.

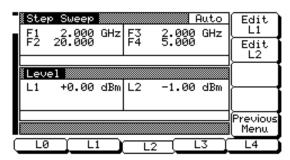
Notice the changes to the Step Sweep Menu display (below). These changes indicate that the alternate sweep frequency mode is active.

Step Auto F1 2.000 GHz F3 2.000 GHz F2 20.000 F4 5.000 GHz F4 5.000	Edit F1 Edit F2
Level L1 +0.00 dBm L2 -1.00 dBm	Sweep Ramp Edit L1
CW Step (Manual)	Alt Swp Menu

Now, press Alt Swp Menu to return to the Alternate Sweep menu.

Selecting an Alternate Sweep Range

To go to the Alternate Range menu (below) from the Alternate Sweep menu, press Alt Range .


	2.000 20.000 20.000	GHz		300 300	GHz GHz dBm	Edit F3 Edit F4
Eul)) F1-	F2)	 EA (E5:	-dE)	Previous Menu F6-dF

Select the alternate sweep range (Full, F1-F2, F3-F4, F5-dF, or F6-dF). The menu then displays the current frequency parameters for the selected sweep range. If you wish to change a frequency parameter, use the menu edit soft-key to open the parameter, then edit it.

When you are done selecting the alternate sweep range, press **Previous Menu** to return to the Alternate Sweep menu.

Selecting an Alternate Sweep Power Level

To go to the Alternate Level menu (below) from the Alternate Sweep menu, press Alt Level.

Select the power level for the alternate sweep range (L0, L1, L2, L3, or L4). The menu then displays the current level parameter for the selected power level. If you wish to change the level, use the menu edit soft-key to open the parameter, then edit it.

A menu edit soft-key is also provided to let you change the power level of the main sweep.

CAUTION

Performing alternate sweeps using power levels that cross step attenuator switch points can cause excessive wear on the switches and reduce the life expectancy of the step attenuator.

When you are done selecting the power level for the alternate sweep range and editing the power level of the main sweep, press Previous Menu to return to the Alternate Sweep menu.

FIXED POWER LEVEL OPERATION

3-9 FIXED POWER LEVEL OPERATION

The CW generator provides leveled output power over a maximum range of up to 28 dB (up to 131 dB with option 2) for CW and sweep frequency operations. Instruments with option 15A provide leveled output power over a maximum range of up to 22 dB (up to 125 dB with option 2). The following paragraphs describe how to place the 680XXB in fixed (non-swept) power level mode, select a power level for output, and activate level offset. Use the Fixed (Non-Swept) Power Level Mode menu map (Chapter 4, Figure 4-5) to follow the menu sequences.

SelectingTo place the 680XXB in a fixed power level modeFixed Powerfrom a CW or sweep (step or manual) frequencyLevel Modemenu, press the main menu key

At the resulting menu display, press Level . The Level Menu (below) is displayed.

ICW F0	3.500 000 000 0 GHz	Edit L1
∦Level L1	+0.00 dBm	
		Edit Offset
		Offset
(Level	(Lv1 Swp)ALC Mode)ALC Loop)	User Cal)

This menu lets you perform the following:

- **General Edit the power level parameter.**
- **□** Edit the level offset parameter.
- □ Turn level offset on/off.

Selecting a

Power Level

There are several ways to select a power level for output. You can (1) edit the current power level, (2) enter a new power level, or (3) select one of the 10 preset power level parameters.

Editing the Current Power Level

Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or the rotary data knob. To close the open power level parameter, press Edit L1 or make another menu selection.

Entering a New Power Level

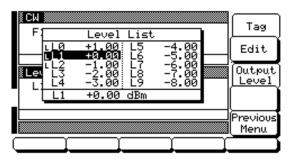
Press Edit L1 to open the power level parameter, then enter the new power level using the keypad

FIXED POWER LEVEL OPERATION

and appropriate terminator key. To close the open power level parameter, press $\mbox{Edit L1}$ or make another menu selection.

Selecting a Preset Power Level

To select one of the preset power levels for output, press the main menu key


The Level Control menu (below) is displayed.

ICW F0	3.500 000 000	0 GHz	Edit L1
			Level List
Level			Tag Lv1 Menu
	+0.00 dBm		
<u> </u>			L4

This menu lets you perform the following:

- Select preset power levels L0, L1, L2, L3, or L4 for output.
- **Go to the Level List menu.**
- **Go to the Tagged Levels menu.**

Level List – To go to the Level List menu (below), press Level List .

This menu lets you select a power level from the list to tag, edit, or output.

Use the cursor control key to select a power level from the level list. The selected power level is highlighted in reverse video and displayed in full below the level list.

Press Tag to mark a selected power level (place an L in front of it). If a power level is already tagged, pressing Tag will untag it (remove the L). Tagging selected power levels lets you quickly switch between them using the scan keys of the Tagged Levels menu.

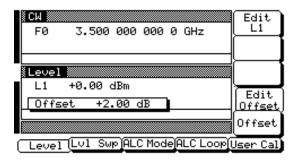
Press Edit to edit the selected power level or enter a new power level.

Press Output Level to output the selected level. This power level is output until you select another level from the list and press Output Level. On the level list, the output power level selection is marked by a black square or, if tagged, an L highlighted in reverse video.

When you are finished , press Previous Menu to return to the Level Control menu display.

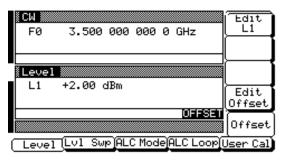
Scanning Tagged Levels–To go to the Tagged Levels menu (below) from the Level Control menu, press Tag Lvl Menu.

FØ	3.500 00	0 000 0) GHz	(L2) Scan Up Scan Dn (L0)
≹Level L1	+0.00 dBm			
				Previous Menu
<u> </u>		L2	[L3]	L4)


This menu lets you select the tagged power levels for output using the Scan Up and Scan Dn keys.

Return to the Level Control menu display by pressing Previous Menu .

Level Offset


Level offset lets you compensate for a device on the CW generator's output that alters the RF output power level at the point of interest. For example, the power level at the test device may be less or more than the displayed power level because of the loss through an external transmission line or the gain of an amplifier located between the 680XXB RF output and the test device. Using the level offset function, you can apply a constant to the displayed power level that compensates for this loss or gain. The displayed power level will then reflect the actual power level at the test device.

To enter an offset value and apply it to the displayed power level, go to the Level Menu. Then press Edit Offset . As shown in the following menu, this opens the offset parameter for editing.

Edit the current offset value using the cursor control key or rotary data knob or enter a new offset value using the keypad and appropriate terminator key. To close the open offset parameter when you are done, press Edit Offset or make another menu selection.

Press Offset to apply the offset to the displayed power level. In this example, a+2.00 dB offset is applied to L1. L1 then displays a power level of +2.00 dBm.

OFFSET

When Offset is selected ON, this status message is displayed on all menu displays to remind the operator that a constant (offset) has been applied to the displayed power level.

3-10 POWER LEVEL SWEEP OPERATION

The CW generator provides leveled output power sweeps at CW frequencies and in conjunction with step frequency sweeps. Power level sweeps can be from a high level to a low level or vice versa. The following paragraphs provide descriptions and operating instructions for the CW power sweep mode and the sweep frequency/step power modes. Use the CW Power Sweep Mode and Sweep Frequency/Step Power Mode menu maps (Chapter 4, Figures 4-6 and 4-7) to follow the menu sequences.

Performing power level sweeps that cross step attenuator switch points can cause excessive wear on the switches and reduce the life expectancy of the step attenuator.

Selecting CW Power Sweep Mode

In the CW power sweep mode, output power steps
 between any two power levels at a single CW frequency. Menus provided let you set or select the sweep range, the step size, the dwell time-per-step, and the sweep trigger.

To place the 680XXB in a CW power sweep mode from a CW frequency menu, press the main menu key

At the resulting menu display, press Lvl Swp . The CW Level Sweep Menu (below) is displayed.

CW K	3.500 000 000 0 GHz	Edit L1
		Edit L2
∦Level	Sweep Auto	Sweep Ramp
L1 L2	+0.00 dBm -1.00	
(Level	Lv1 Swp ALC Mode ALC Loop (Jser Cal)

This menu lets you perform the following:

- Select a power level sweep range (edit the sweep start and stop power level parameters).
- □ Go to the sweep ramp menu (set the dwell time-per-step, the step size or number of steps, and select a sweep trigger).

Setting CW Power Sweep Step Size and Dwell Time There are two ways to set the size of each step of the CW power sweep—set the step size or set the number of steps. The step size range is 0.01 dB to the full power range of the synthesizer; the number of steps range is 1 to 10,000. The dwell time-per-step of the CW power sweep can be set for any time in the range of 1 ms to 99 sec. The step size and dwell time-per-step are set from the CW level sweep ramp menu.

To go to the CW Level Sweep Ramp menu from the CW Level Sweep menu, press Sweep Ramp.

ECW FØ	3.500 000 000 0 GHz	Dwell Time
		Step Size
Level		(Num of Steps
Ľź	+0.00 dBm -1.00	Trigger Menu
		Previous Menu
Level	Lv1 Swp(ALC Mode)(ALC Loop)	Úser Cal)

This menu lets you set the dwell time, the step size, the number of steps, and go to the trigger menu.

Press Dwell Time to open the dwell time-per-step parameter.

Press Step Size to open the step size parameter.

Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

To go to the CW Level Sweep Trigger menu from this menu, press Trigger Menu. The trigger menu lets you select a CW power sweep trigger (described on the following page).

Press Previous Menu to return to the CW Level Sweep menu.

RANGE

This error message is displayed when (1) the step size value entered is greater than the level sweep range or (2) the number of steps entered results in a step size of less than 0.01 dB. Entering a valid step size will clear the error.

Selecting a CW Power Sweep Trigger There are three modes of triggering provided for the CW power sweep—automatic, external, and single. The sweep trigger is selectable from the CW Level Sweep Trigger menu. The following is a description of each trigger mode.

- □ Auto (Automatic)–The CW power sweep continually sweeps from its start power level to its stop power level with optimal retrace time.
- □ **External**-The CW power sweep recurs when triggered by an external TTL-compatible clock pulse to the rear panel AUX I/O connector.
- □ **Single**-A single CW power sweep starts when the trigger key is pressed. If a sweep is in progress when the key is pressed, it aborts and resets.

To go to the CW Level Sweep Trigger menu from the CW Level Sweep Ramp menu, press Trigger Menu.

FØ	3.500 000 000 0 GHz	Auto External
<mark>∦Leve</mark> 1 L1 L2	Sweep Auto +0.00 dBm -1.00	Single
	Lv1 Swp[ALC Mode]ALC Loop[Previous Menu

To select a CW power sweep trigger mode, press its menu sof-key. A message showing the CW power sweep trigger mode selected appears on the right side of the level mode title bar.

If you select the single sweep trigger mode, the menu display changes, adding the menu soft-key labeled Trig. Pressing Trig starts a single CW power sweep. If a single CW power sweep is in progress, pressing Trig causes the sweep to abort and reset.

Press Previous Menu to return to the CW Level Sweep Ramp menu.

Selecting a Power Level Sweep Range

Selecting a power level sweep range consists of choosing a start and stop level for the power level sweep. The power level sweep range selection process is identical for all power level sweep modes— CW power sweep and step sweep frequency/step power. You can select a power level sweep range as follows:

- □ Edit the current start and stop power level parameter values.
- □ Enter new start and stop power level parameter values.
- □ Select one of the preset power level sweep range parameters (L1-L2, L3-L4, L5-L6, L7-L8, or L9-L0).

ICW	3.500 000 000 0 GHz	Edit L1
		Edit L2
Level		(Sweep Ramp
Ľź	+0.00 dBm -1.00	
Level	LUI SWPALC ModelALC Loop(Jser Cal

Editing the Current Start / Stop Power Levels

To edit the current power level sweep range, start by opening either the start or stop power level parameter (in the display above, Edit L1 opens the start power level parameter; Edit L2 opens the stop power level parameter).

Edit the open power level parameter using the cursor control key or the rotary data knob. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

Entering New Start / Stop Power Levels To enter a new power level sweep range start by opening either the start or stop power level parameters (press Edit L1 or Edit L2).

Enter a new power level using the keypad and appropriate terminator key. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

POWER LEVEL SWEEP OPERATION

Selecting a Preset Power Level Sweep Range

There are five preset power level sweep range parameters selectable in the power level sweep modes. These preset power level sweep range parameters are L1-L2, L3-L4, L5-L6, L7-L8, and L9-L0.

To select one of the preset power level sweep ranges from a Level Sweep menu, press the main menu key

The Level Sweep Control menu (below) is displayed.

CW FØ	3.500 000 000 0 GHz	Edit L1
		Edit L2
∦Level		
L1 L2	+0.00 dBm -1.00	
(L1-L2	<u></u>	L9-L0)

In addition to letting you select one of the preset sweep ranges for the power level sweep, this menu lets you set the start and stop power level parameters for each preset sweep range.

Setting a Preset Power Level Sweep Range–At the Level Sweep Control menu, select the power level sweep range (L1-L2, L3-L4, L5-L6, L7-L8, or L9-L0) that you wish to set. The menu then displays the current frequency parameters for the selected power level sweep range. Now, use the menu edit soft-keys to open the power level parameters for editing.

Edit the current power level parameter values or enter new power level parameter values for the power level sweep range. To close the open power level parameter when you are finished, press its menu edit soft-key or make another menu selection.

You can set all the preset power level sweep ranges in this manner.

Selecting a Sweep Frequency / Step Power Mode In step sweep frequency/step power mode, a power level step occurs after each frequency sweep. The power level remains constant for the length of time required to complete each frequency sweep. Menus provided let you control the power level sweep range and step size.

To select a step sweep frequency/step power mode, start with a step sweep menu display. Then press the main menu key

At the resulting menu display, press Lvl Swp . The Level Sweep Menu is displayed.

∦Step F1 F2	Sweep Auto 2.000 000 000 0 GHz 20.000 000 000 0 GHz	Edit L1
F2	20.000 000 000 0	Edit L2
∦Level	Sweep	Sweep
L1 L2	+0.00 dBm -1.00	Ramp
Level	Lv1 SwpALC Mode ALC Loop	Jser Cal)

This menu lets you perform the following:

- Select a power level sweep range (edit the sweep start and stop power level parameters).
- □ Go to the sweep ramp menu (set the step size or number of steps).

Setting Power Level Step Size There are two ways to set the step size of the power level step that occurs after each frequency sweep-set the step size or set the number of steps. The step size range is 0.01 dB to the full power range of the synthesizer; the number of steps range is 1 to 10,000. The power level step size is set from the level sweep ramp menu.

To go to the Level Sweep Ramp menu from the Level Sweep menu, press Sweep Ramp.

Step Auto F1 2.000 000 0 0Hz F2 20.000 000 0 0 0	Dwell Time
F2 20.000 000 000 0	Step Size
Level Sweep	Num of Steps
L1 +0.00 dBm L2 -1.00	Trigger Menu
	Previous Menu
Level Lv1 Swp(ALC Mode)(ALC Loop)	Úser Cal)

This menu lets you set the step size and the number of steps.

Press Step Size to open the step size parameter.

Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Previous Menu to return to the Level Sweep menu.

RANGE

This error message is displayed when (1) the step size value entered is greater than the level sweep range or (2) the number of steps entered results in a step size of less than 0.01 dB. Entering a valid step size will clear the error.

3-11 LEVELING OPERATIONS

The 680XXB generates leveled output power over a maximum range of up to 28 dB (up to 131 dB with option 2). Instruments with option 15A provide leveled output power over a maximum range of up to 22 dB (up to 125 dB with option 2). An automatic level control (ALC) system controls the amplitude and power level of the RF output. The operator can select the ALC mode of operation—internal, external (detector or power meter), or fixed gain (ALC off). In addition, the 680XXB provides (1) an ALC power slope function that provides compensation for high frequency system or cable losses, (2) a decouple function that allows decoupling of the step attenuator (if equipped) from the ALC system, and (3) a user level (flatness correction) calibration function that provides for calibrating out path-variations-with-frequency in a test setup.

The following paragraphs provide descriptions and operating instructions for the power leveling modes and functions. Use the Leveling Modes menu map (Chapter 4, Figure 4-8) to follow the menu sequences.

Selecting a Leveling Mode The ALC system is a feedback control system, in which the output power is measured at a detector and compared with the expected power level. If the output and desired power levels do not equal, the ALC adjusts the power output until they do. The ALC feedback signal can come from either the internal detector or an external detector or power meter. Alternatively, the output power can be set to a fixed level without using the normal feedback (ALC off). The ALC mode menu lets you make the selection of a leveling mode.

To go to the ALC Mode menu, first press the main menu key

At the Level/ALC Select Menu display, press ALC Mode . The ALC Mode Menu (below) is displayed.

Step Auto F1 2.000 000 000 0 0Hz F2 20.000 000 000 0 0	Leveling Menu
F2 20.000 000 000 0	Atten Menu
Level	Ext ALC Front
L1 +0.00 dBm	Ext ALC Rear
Level Lvl Swp ALC Mode ALC Loop	User Cal)

The ALC Mode menu lets you perform the following:

- Go to the leveling menu (select the ALC mode of operation).
- □ Go to the attenuation menu (decouple the attenuator, if equipped, from the ALC system and set the power level and attenuation).
- □ Select either the front panel or rear panel external ALC input.

Internal Leveling

This is the normal (default) leveling mode. Output power is sensed by the internal detector in the 680XXB. The detector output signal is fed back to the ALC circuitry to adjust the output power level. Internal ALC is selected from the leveling menu.

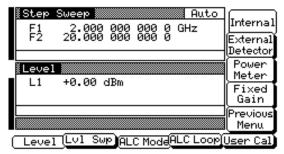
To go to the Leveling Menu from the ALC Mode menu, press Leveling Menu. The Leveling Menu (below) is displayed.

Step F1 F2 Level	Sweep Auto 2.000 000 000 0 GHz 20.000 000 000 0 40.00 dBm	Internal External Detector Power Meter Fixed Gain
	LVI SWP ALC Mode ALC Look	Previous Menu

To select internal ALC, press Internal.

Pressing one of the other leveling menu soft-keys External Detector, Power Meter, or Fixed Gain will turn off internal leveling.

Press Previous Menu to return to the ALC Mode menu.

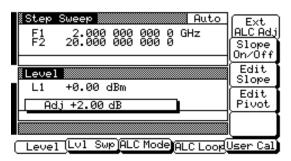

External Leveling

In external leveling, the output power from the 680XXB is detected by an external detector or power meter. The signal from the detector or power meter is returned to the ALC circuitry. The ALC adjusts the output power to keep the power level constant at the point of detection. The external ALC source input is selected from the leveling menu.

Before going to the Leveling Menu from the ALC Mode menu, select whether the external ALC signal is to be connected to the front- or rear-panel EXT ALC IN connector.

At the ALC Mode menu, press Ext ALC Front to select front panel input, or Ext ALC Rear to select rear panel input.

Now, press Leveling Menu to go to the Leveling Menu.



Next, select the type of external sensor you are using to detect the output power.

To select the external ALC input from an external detector, press External Detector.

To select the external ALC input from a power meter, press Power Meter .

After you have made the external ALC input connection and selected the sensor type, press ALC Loop . The ALC Loop Menu (below) is displayed.

While monitoring the power level at the external detection point, first press Ext ALC Adj, then use the cursor control key or rotary data knob to adjust the ALC signal to obtain the set power level.

To return to the Leveling Menu, press ALC Mode then press Leveling Menu .

At the Leveling menu, pressing either Internal or Fixed Gain will turn off external leveling.

Press Previous Menu to return to the ALC Mode menu.

Fixed Gain

In the fixed gain mode, the ALC is disabled. The RF Level DAC and step attenuator (if installed) are used to control the relative power level. Power is not detected at any point, and the absolute power level is uncalibrated. Fixed gain mode is selected from the leveling menu.

To go to the Leveling Menu from the ALC Mode menu, press Leveling Menu.

XLevel	Sweep Auto 2.000 000 000 0 GHz 20.000 000 000 0 000 000 0 000 0 000000	Internal External Detector Power Meter Fixed Gain
Leve:	T (LV1 SWP)ALC Mode(ALC Loop)	Previous Menu Jser Cal

To select fixed gain mode, press Fixed Gain .

To return to normal ALC operation, press Internal.

Press Previous Menu to return to the ALC Mode menu.

Attenuator Decoupling

In 680XXBs equipped with option 2 step attenuators, the ALC and attenuator work in conjunction to provide leveled output power down to -115 dBm. In the normal (coupled) leveling mode, when the desired power level is set, the correct combination of ALC level and attenuator setting is determined by the instrument firmware. In some applications, such as receiver sensitivity testing, it is desirable to control the ALC level and attenuator setting separately by decoupling the step attenuator from the ALC. The ALC mode menu lets you select attenuator decoupling.

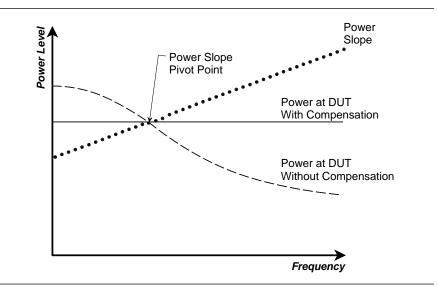
At the ALC Mode menu, press Atten Menu. The Attenuator Menu (below) is displayed.

[∦] Step F1 F2	Sweep 2.000 20.000	000	000	Ø Й	<u>Au</u> GHz	ito	Edit L1
šLevel	20.000	000	000	0			Decouple [Incr]
L1	+0.00	dBm	Atte	en	50	dB	Atten Decr Atten
							Previous Menu
Level	TLVI S	NP) AL	C Mod	id Ali	LC Lo	Jqoc	Jser Cal)

This menu lets you decouple the step attenuator from the ALC, set the power level, and set the attenuation in 10 dB steps.

Press Decouple to decouple the step attenuator from the ALC.

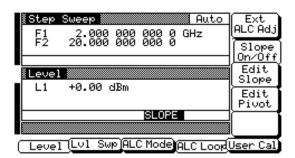
Press Edit L1 to open the power level parameter for editing. Edit the current level using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the power level, press Edit L1 to close the open parameter.


To change the attenuation setting, press Incr Atten or Decr Attn . Pressing these soft-keys changes the attenuation in 10 dB steps.

Press Previous Menu to return to the ALC Mode menu.

NOTE

The set power level may not be maintained when switching between attenuator coupling modes.


ALC PowerThe ALC power slope function lets you compensate
for system, cable, and waveguide variations due to
changes in frequency, by linearly increasing or de-
creasing power output as the frequency increases.
As shown in the following illustration, the power
slope function provides you with the ability to set
both the power slope and the pivot point. The ALC
Loop menu lets you activate the ALC power slope
function.

To go to the ALC Loop Menu from the Level/ALC Control Menu display, press ALC Loop . The ALC Loop Menu (below) is displayed.

	Sweep Auto 2.000 000 000 0 GHz 20.000 000 000 0 GHz	Ext ALC Adj
F1 F2	2.000 000 000 0 GHz 20.000 000 000 0	Slope On/Off
Level	+0.00 dBm	[Edit Slope]
	-9.00 dbiii	Edit Pivot
(Level	LV1 Swp ALC Mode ALC Look	Jser Cal)

This menu lets you turn the power slope on or off and edit the slope value and pivot point frequency.

Press Slope On/Off to activate the ALC power slope function.

Press Edit Pivot to open the pivot point frequency parameter for editing. Edit the current frequency using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing Edit Pivot again or by making another menu selection.

Press Edit Slope to open the slope parameter for editing. Edit the current slope value using the cursor control key or rotary data knob or enter a new value using the key pad and the STEPS termination key. When you have finished setting the open parameter, close it by pressing Edit Slope again or by making another menu selection.

While monitoring the power level at the deviceunder-test (DUT), adjust the power slope and pivot point to level the power at the DUT.

SLOPE

When Power Slope is selected ON, this status message is displayed on all menu displays to remind the operator that a power slope correction has been applied to the ALC. User Level Calibration The user level (flatness correction) calibration function lets you calibrate out path variations with frequency that are caused by external switching, amplifiers, couplers, and cables in the test setup. This is done by means of an entered power-offset table from a GPIB power meter or calculated data. When user level flatness correction is activated, the set power level is delivered at the point in the test setup where the calibration was performed. This "flattening" of the test point power level is accomplished by summing a power-offset word (from the power-offset table) with the CW generator's normal power level DAC word at each frequency point.

Up to five user level flatness correction power-offset tables from 2 to 801 frequency points/table can be created and stored in 680XXB memory for recall. The GPIB power meters supported are the ANRITSU Model ML4803A and the Hewlett-Packard Models 437B, 438A, and 70100A.

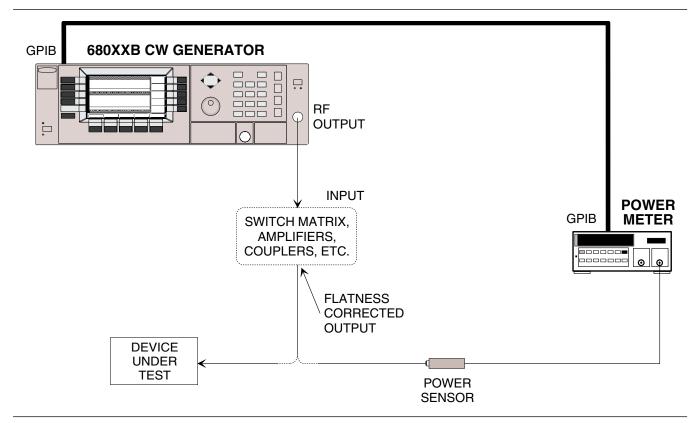


Figure 3-4 Setup for Creating a Power-Offset Table (User Level Flatness Correction)

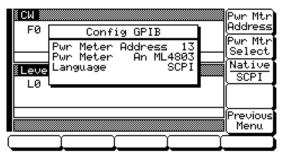
Equipment Setup

To create a power-offset table for user level flatness correction, connect the equipment (shown in Figure 3-4) as follows:

- **Step 1** Using a GPIB cable, connect the Power Meter to the 680XXB.
- *Step 2* Calibrate the Power Meter with the Power Sensor.
- **Step 3** Connect the Power Sensor to the point in the test setup where the corrected power level is desired.

Power Meter Model and GPIB Address

In order for the 680XXB to control the power meter, the GPIB address and power meter model must be selected from the Configure GPIB menu.


Press **SYSTEM** to go to the System Menu display. At the System Menu display, press **Config**. The System Configuration Menu (below) is displayed.

CW F1	2.000 000 000 0 GHz	Front Panel
		(Rear Panel
≹Level		RF
L1	+0.00 dBm	GPIB
		Incr Menu
Reset	Config Setups Secure S	Belftest

Next, press **GPIB**. The Configure GPIB menu (below) is displayed.

CW 🕅 F1		Config GPI	в	GPIB Address
		Address Terminator	CR/LF	Line Term
∦Leve				
				More
				Previous Menu
	\neg			r —

At the Configure GPIB menu, press More to go to an additional Configure GPIB menu (below).

Press Pwr Mtr Address to change the address of the power meter on the GPIB (the power meter's default address is 13). Enter the new address, between 1 and 30, using the cursor control key or the data entry key pad and the terminator key

The new GPIB address will appear on the display.

Press Pwr Mtr Select to select the power meter model being used. (Supported power meters are the ANRITSU ML4803A and Hewlett-Packard 437B, 438A, and 70100A.)

Press Previous Menu to return to the main Configure GPIB menu display.

At the Configure GPIB menu, press Previous Menu to return to the System Configuration menu display.

Creating a Power-Offset Table

The 680XXB must be in CW frequency mode and fixed (non-swept) power level mode in order to create a power-offset table for user level flatness correction.

Place the CW generator in CW frequency mode by pressing the main menu key

At the resulting menu display, press CW . The 680XXB is now in CW frequency mode.

Place the CW generator in a fixed power level mode by pressing the main menu key

At the resulting menu display, press Level . The 680XXB is now in fixed (non-swept) power level mode.

At the Level Menu, press User Cal . The User Level Cal menu (below) is displayed.

≹С₩ 🗰 F1	User Level Cal	Iz	Edit Start
	Flo 2.000 000 GHz Fhi 20.000 000 GHz		Edit Stop Edit
	Points 10 Status->Off		Points On
		•	Off Start Cal
User	1 User 2 User 3 Us	er 4 í	User 5

This menu lets you perform the following:

- **□** Create a power-offset table.
- Select a measurement frequency range (edit the start and stop frequency parameters).
- □ Select the number of points at which correction information is to be taken.
- **□** Apply a power-offset table to the test setup.

First, press the menu soft-key to select the poweroffset table (User 1, User 2, User 3, User 4, or User 5) that you wish to create.

Next, set the measurement frequency range by pressing Edit Start or Edit Stop to open the start (Flo) or stop (Fhi) frequency parameter for editing. Edit the current frequency using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu edit soft-key again or by making another menu selection.

Then, select the number of frequency points at which correction information is to be taken by pressing Edit Points to open the number-of-points parameter for editing. Edit the current number-of-points using the cursor control key or rotary data knob or enter a new value using the keypad and the STEPS termination key. (The number of

points range is 2 to 801.) When you have finished setting the open number-of-points parameter, close it by pressing Edit Points again or by making another menu selection.

Now, press Start Cal to begin automatically taking power level correction information at each frequency point. During this process the menu displays the status: Calibrating along with the current measurement frequency point.

NOTE

To terminate the measurement process at any time before completion, press Abort .

Once the power-offset table has been created, it is stored in non-volatile memory. The power-offset table is now ready to be applied to the test setup. Disconnect the Power Sensor and Power Meter from the test setup.

Applying User Level Flatness Correction

Whenever user level flatness correction is applied to the test setup by activating the power-offset table, the set power level is delivered at the point where the calibration was performed.

To activate the selected power-offset table and apply user level flatness correction to the test setup, press On/Off. The User Level Cal menu will display the status: On.

To turn off the selected power-offset table and remove user level flatness correction from the test setup, press On/Off again. The User Level Cal menu will display the status: Off.

Entering a Power-Offset Table via GPIB

User level flatness correction can be applied to the test setup using a power-offset table created from calculated data and entered via the GPIB. Refer to the 680XXB Programming Manual (P/N 10370-10266) for information and instructions on creating a power-offset table and entering it via the GPIB.

USER 1...5

When a power-offset table is se-
lected ON, this status message is
displayed on all menu displays to
remind the operator that user level
flatness correction has been applied
to the ALC.

Erasing the Power-Offset Tables from Memory The power-offset tables are stored in non-volatile memory. A master reset is required to erase the contents of the tables and reprogram them with default data.

To perform a master reset, proceed as follows:

- *Step 1* With the 680XXB in standby, press and hold the RF OUTPUT ON/OFF key.
- *Step 2* Press the LINE OPERATE/STANDBY key to turn the instrument on.
- *Step 3* When the first menu is displayed (after the start-up display), release the RF OUT-PUT ON/OFF key.

The contents of non-volatile memory have now been erased and reprogrammed with default data.

ΝΟΤΕ

The master reset function overwrites all information stored in the non-volatile memory with default values. This includes the nine stored front panel setups.

3-12 SYSTEM CONFIGURATION

The system configuration function provides menus that let you set or select instrument configuration items; for example, display intensity, frequency scaling, polarity of blanking and video marker outputs, RF on or off during retrace or between steps, GPIB operating parameters, external interface language, and increment sizes for frequency, power level, and time parameters. Use the System Configuration menu map (Chapter 4, Figure 4-9) to follow the menu sequences.

To go to the System Configuration menu, first press **SYSTEM**. At the System Menu display, press **Config**. The System Configuration Menu (below) is displayed.

ECW	2.000 000 000 0 GHz	(Front Panel)
		(Rear Panel
Level	10.00.00	RF
	+0.00 dBm	GPIB
		Incr Menu
Reset	Config Setups Secure S	Selftest)

This menu lets you go to the Front Panel, Rear Panel, RF, GPIB, and Increment Configuration menus.

Configuring
the FrontConfiguring the front panel of the CW generator in-
volves adjusting the intensity level of the data dis-
play and setting the frequency scaling as required.

To go to the Configure Front Panel menu from the System Configuration menu, press Front Panel. The Configure Front Panel Menu (below) is displayed.

CW	2.000 000 000 0 GHz	Brite
		Dim
≹Level L1	+0.00 dBm	Freq Scaling
		Previous Menu

Display Intensity

Press Brite (repeatedly) to increase the intensity of the data display to the desired level.

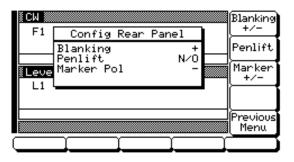
Press Dim (repeatedly) to decrease the intensity of the data display.

Frequency Scaling

Frequency scaling lets you set a reference multiplier value and apply it to all frequency parameters. The reference multiplier can be any value between 0.1 and 14. Changing the multiplier value changes the entered and displayed frequencies, but it does not affect the output of the CW generator.

For example:

Frequency scaling set to 4 CW frequency set to 20 GHz 680XXB output frequency is 5 GHz (20 GHz ÷ 4)


Press Freq Scaling to open the reference multiplier parameter, then edit the current value using the cursor control key or rotary data knob or enter a new value using the data entry key pad and any terminator key. To close the open multiplier parameter, press Freq Scaling or make another menu selection.

When done, press Previous Menu to return to the System Configuration menu.

NOTE

Resetting the 680XXB sets the frequency scaling reference multiplier value to 1. *Configuring the Rear Panel* Configuring the rear panel of the CW generator consists of selecting the polarity of the retrace blanking, bandswitch blanking, retrace penlift, and video marker outputs.

To go to the Configure Rear Panel menu from the System Configuration menu, press Rear Panel. The Configure Rear Panel Menu (below) is displayed.

Press Blanking +/- to select a +5V or -5V level for the retrace and bandswitch blanking outputs. The retrace and bandswitch blanking signal outputs are both available at the rear panel AUX I/O connector. The display will reflect your selection.

Press Penlift to select normally-open (N/O) or normally-closed (N/C) contacts on the internal penlift relay. The penlift relay output, optionally available at the rear panel, is used to lift a plotter pen during retrace. The display will reflect your selection.

Press Marker +/- to select a +5V or -5V level for the video marker output when video markers are selected ON. The video marker signal output is available at the rear panel AUX I/O connector. The display will reflect your selection.

When done, press **Previous Menu** to return to the System Configuration menu.

Configuring	Configuring the RF of the 680XXB involves the fol-
the RF	lowing:
	Selecting whether the RF should be on or off during retrace.

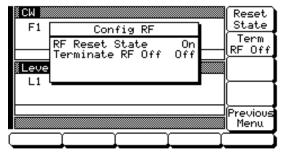
- Selecting whether the RF should be on or off during frequency switching in CW and step sweep modes.
- Selecting whether a sweep triggered by a single or external trigger should rest at the top or bottom of the sweep ramp.
- □ Selecting whether the RF should be on or off at reset.
- Selecting 40 dB or 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.

To go to the Configure RF Menu (below) from the System Configuration menu, press RF.

ICW IIII F1	Config RF	-	Retrace RF
	Retrace RF Delta-F RF Ramp Rest	Off On 10	Delta-F RF Ramp Rest
			(More)
			Previous Menu
\square			

Press Retrace RF to select RF On or Off during retrace. The display will reflect your selection.

Press Delta-F RF to select RF On or Off during frequency switching in CW or step sweep modes. The display will reflect your selection.


Press Ramp Rest to select 0 or 10 for the ramp rest point for sweeps that are triggered by a single trigger or external trigger. 0 indicates that the sweep will rest at the bottom of the sweep ramp; 10 indicates that the sweep will rest at the top of the sweep ramp. The display will reflect your selection.

Press More to go to the Additional Configure RF menu for more selections.

Press Previous Menu to return to the System Configuration Menu display.

Additional Configure RF Menu

When you press More , the Additional Configure RF Menu (below) is displayed.

This menu lets you perform the following:

- Select whether the RF should be on or off at reset.
- Select 40 dB or 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.

Press Reset State to select RF On or Off at reset. The display will reflect your selection.

Press Term RF Off to select 40 dB (minimum) of attenuation when RF is switched off in units with a step attenuator (Option 2) installed. This provides a better output source match. The display will reflect On to indicate the 40 dB of attenuation is applied. Press Term RF Off again to select 0 dB of attenuation when RF is switched off. The display will reflect Off to indicate 0 dB of attenuation is applied.

Press Previous Menu to return to the main Configure RF Menu display.

NOTE

The Term RF Off selection is **only** available in those 680XXB models having Option 2 and Firmware Version 3.42 and above and in 680X5B models having Option 2 and Firmware Version 1.29 and above.

Configuring the GPIB	Configuring the GPIB for the CW generator consists of the following:
	of the following.

- □ Selecting a GPIB address and the GPIB line terminator for the 680XXB.
- □ Selecting the model and GPIB address for the power meter used to create a user level flatness correction power-offset table.
- Selecting the external interface language for remote operation of units with Option 19.

To go to the Configure GPIB menu from the System Configuration menu, press GPIB. The Configure GPIB Menu (below) is displayed.

CW 🕷 F1	Config GPI	в	GPIB Address
	Address Terminator	CR/LF	Line Term
L1			More
	 		Previous Menu

Press GPIB Address to change the address of the 680XXB on the bus (the CW generator's default GPIB address is 5). Enter a new address, between 1 and 30, using the cursor control key or the data entry keypad and the terminator key

The new GPIB address will appear on the display.


Press Line Term to select a carriage return (CR) or a carriage return and line feed (CR/LF) as the GPIB data delimiter. Consult the GPIB controller's manual to determine which data delimiter is required.

Press More to go to the additional Configure GPIB menu.

Press Previous Menu to return to the System Configuration menu.

Additional Configure GPIB Menu

When you press More the additional Configure GPIB menu (below) is displayed.

This menu lets you perform the following:

- □ Select the model and GPIB address for the power meter that is used to create a user level flatness correction power-offset table. (Refer to page 3-53 for a description of this function.)
- Select the external interface language for remote operation of 680XXBs with Option 19 installed. (Refer to page 2-9 for more information.)

Press Pwr Mtr Address to change the address of the power meter on the GPIB (the power meter's default GPIB address is 13). Enter a new address, between 1 and 30, using the cursor control key or the data entry keypad and the terminator key

The new GPIB address will appear on the display.

Press Pwr Mtr Select to select the power meter model being used. (Supported power meters are the ANRITSU ML4803A and Hewlet-Packard 437B, 438A, and 70100A.)

Press Native/SCPI to select the external interface language to be used for remote operation of the 680XXB. (Language selection is only available on instruments that have Option 19 installed.)

Press Previous Menu to return to the main Configure GPIB menu display.

Setting Increment Sizes

The Increment menu lets you set the incremental size for editing frequency, power level, and time parameters. When the increment mode is selected on, these parameter values will increase or decrease by the set amount each time the \land or \lor pad is pressed or the rotary data knob is turned clockwise or counter-clockwise. The menu also lets you turn the increment mode on and off.

To go to the Increment menu from the System Configuration menu, press Incr Menu. The Increment Menu (below) is displayed.

CW K	2.000 000 000 0 GHz	Incr Mode
		Freq Incr
Level	+0.00 dBm	Level Incr
	-0.00 dbm	Time Incr
		Previous Menu

Press Freq Incr to open the frequency increment parameter.

Press Level Incr to open the power level increment parameter.

Press Time Incr to open the time increment parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Incr Mode to turn the increment mode on. Press again to turn it off.

When done, press Previous Menu to return to the System Configuration menu.

3-13 SAVING/RECALLING INSTRUMENT SETUPS

The 680XXB offers the capability to store up to ten complete front panel setups. The setups are numbered 0 through 9. The following paragraphs describe how to save and recall front panel setups.

Saving Setups Once you have decided that an 680XXB setup should be retained for future use, follow the procedure below to save it.

First, press **SYSTEM** to display the System Menu.

Now, press Setups . The Setups Menu (below) is displayed.

F1 2.000 000 000 0 GHz	Save
	Recall
Level	
L1 +0.00 dBm	
Reset [Config] Setups (Secur	re (Selftest)

Press Save , then enter the desired setup number (between 0 and 9) on the keypad. The setup is now saved.

NOTE

Setup #0 automatically saves the current front panel settings when the instrument is shutdown using the front panel LINE key. Therefore, it is recommended that you use only setups #1 through #9 to save front panel setups.

When 680XXB shutdown occurs because of main power interruptions, the current front panel settings are not saved.

To recall a previously saved setup, first access the Setups Menu as described above.

Recalling

Setups

At the Setups Menu, press **Recall**, then enter the setup number on the keypad.

The 680XXB resets itself to the recalled configuration.

SAVING/RECALLING INSTRUMENT SETUPS

erased and reprogrammed with default data.

	Erasing Stored Setups	red memory. A master reset is required to erase the co		
		To perfor	m a master reset, proceed as follows:	
NOTE The master reset function over- writes all information stored in the		Step 1	With the 680XXB in standby, press and hold the RF OUTPUT ON/OFF key.	
non-volatile memory with default values. This includes the five power-offset tables used for the		Step 2	Press the LINE OPERATE/STANDBY key to turn the instrument on.	
user level flatness correction func- tion.		Step 3	When the first menu is displayed (after the start-up display), release the RF OUT- PUT ON/OFF key.	
		The cont	ents of non-volatile memory have now been	

680XXB OM

3-14 SECURE OPERATION

The 680XXB can be operated in a secure mode of operation. In this secure mode, the display of all frequency and power level parameters is disabled during both local (front panel) and remote (GPIB) operations. The instrument will continue to function normally in all other respects. The following paragraphs describe how to place the CW generator in secure mode and how to return to normal operation.

To place the 680XXB in the secure mode, first press **SYSTEM** to display the System Menu.

Next, press Secure . This places the CW generator in the secure mode and the Secure Menu (below) is displayed.

1 CM	Secure N	1ada	Oot iu	10	
	Secure r	loge	HCCI	ve	_[
≹Level					┩
Reset	Config) Seti	ups)	Secure	Selftest

NOTE

During secure mode, all main menu keys and menu soft-keys operate normally. The menu soft-key labels are displayed and change with menu selections. Only the parameter display is disabled.

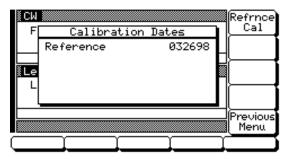
To return the 680XXB to unsecured (normal) operation, press **SYSTEM**, then press Reset.

REFERENCE OSCILLATOR CALIBRATION

3-15 REFERENCE OSCILLATOR CALIBRATION

NOTES

1. The calibration function is **only** available in those 680XXB models having Firmware Version 3.42 and above and 680X5B models having Firmware Version 1.29 and above.


2. This calibration is not applicable to units having Option 16, High Stability Time Base, installed. The reference oscillator calibration function lets you calibrate the internal 100 MHz crystal reference oscillator of the 680XXB using an external 10 MHz, 0 to +10 dBm reference signal.

NOTE

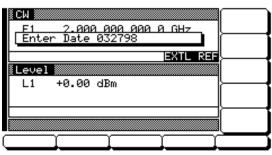
Before beginning calibration, always let the 680XXB warm up for a minimum of 120 hours.

To perform calibration of the internal reference oscillator, first connect the external 10 MHz reference signal to the 680XXB rear panel 10 MHz REF IN connector.

Next, press the **SYSTEM** main menu key. At the System Menu display, press Cal Menu to go to the Calibration Menu (below).

Press Refrnce Cal to begin calibration.

Press Previous Menu to return to the System Menu display.

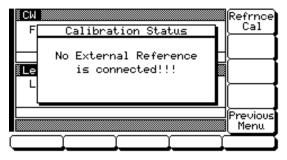

When Refrace Cal is pressed, the Calibration Status Menu (below) is displayed.

CW F Calibration Status	
About to start a calibration! This will permanently change the calibration data.	
Proceed or Abort?	
(Proceed)	Abort

Press Proceed to start the calibration.

Press Abort to cancel the calibration and return to the Calibration Menu display.

When **Proceed** is pressed, the date parameter opens for data entry.


Using the key pad, enter the current date (in any desired format). Then, press any terminator key. The Calibration Status Menu display changes to indicate calibration in progress.

When the reference oscillator calibration is complete, the Calibration Menu is displayed.

External Reference Not Connected

If calibration is attempted without an external 10 MHz reference signal connected to the rear panel 10 MHz REF IN connector, the Calibration Status Menu displays the following:

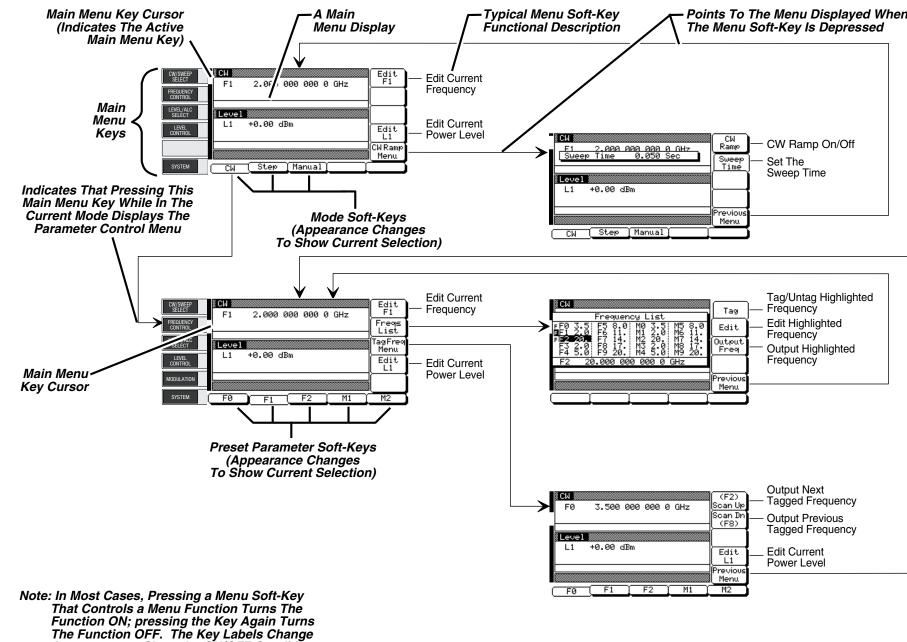
Chapter 4 Local Operation–Menu Maps

Table of Contents

4-1	INTRODUCTION	4-3
4-2	MENU MAP DESCRIPTION	4-3

Chapter 4 Local Operation–Menu Maps

This chapter provides menu maps that support the 680XXB front panel operating instructions found in Chapter 3. It includes menu maps for all of the frequency and power level modes of operation. In addition, a menu map for system configuration is also provided.


A menu map shows the menu key selections and instrument menu displays for a particular mode of CW generator operation. The menu displays are shown as they appear on the instrument and are linked together to show the sequence of menu selection. A brief description of the function of each menu's soft-keys is provided. If a menu soft-key selects another menu, then it is shown linked to that menu. Figure 4-1, on page 4-5, is a sample menu map annotated to identify the key elements.

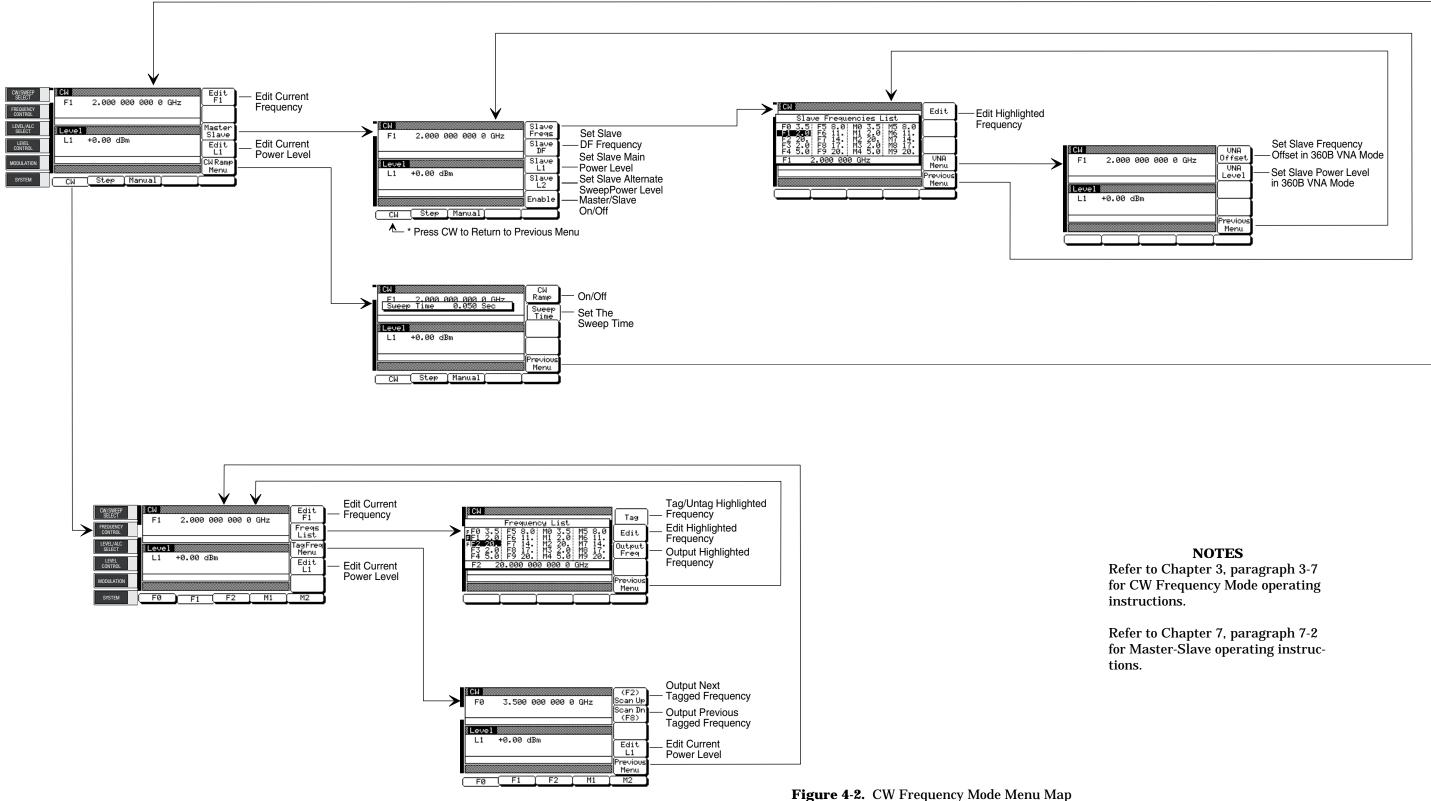
The following is a list of the menu maps contained in this chapter.

Figure	Title	Page
4-1	Sample Menu Map	. 4-5
4-2	CW Frequency Mode Menu Map	. 4-6
4-3	Step Sweep Frequency Mode Menu Map	. 4-7
4-4	Manual Sweep Frequency Mode Menu Map	. 4-8
4-5	Fixed Power Level Mode Menu Map	. 4-9
4-6	CW Power Sweep Mode Menu Map	. 4-10
4-7	Sweep Frequency/Step Power Mode Menu Map	. 4-11
4-8	Leveling Modes Menu Map	. 4-12
4-9	System Configuration Menu Map	. 4-13

4-1 INTRODUCTION

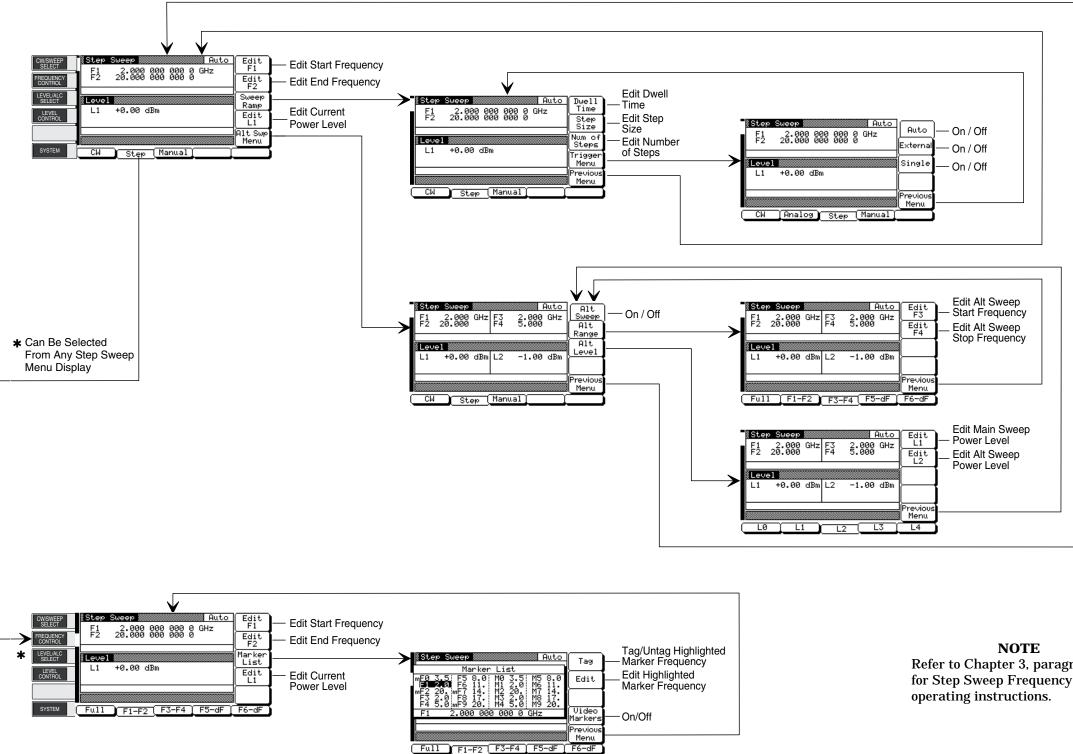
4-2 MENU MAP DESCRIPTION

Appearance to Show the ON/OFF Condition.


680XXB OM

SAMPLE MENU MAP

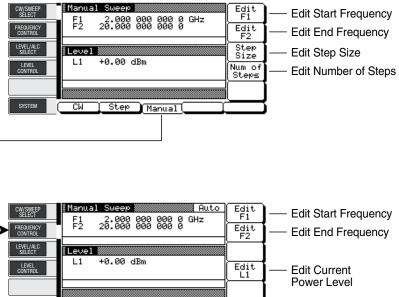
Points To The Menu Displayed Whenever

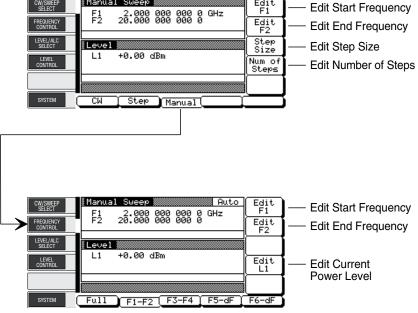


LOCAL OPERATION -MENU MAPS

CW **FREQUENCY MODE**

680XXB OM




STEP SWEEP FREQUENCY MODE

Refer to Chapter 3, paragraph 3-8 for Step Sweep Frequency Mode

Figure 4-3. Step Sweep Frequency Mode Menu Map

LOCAL OPERATION -MENU MAPS

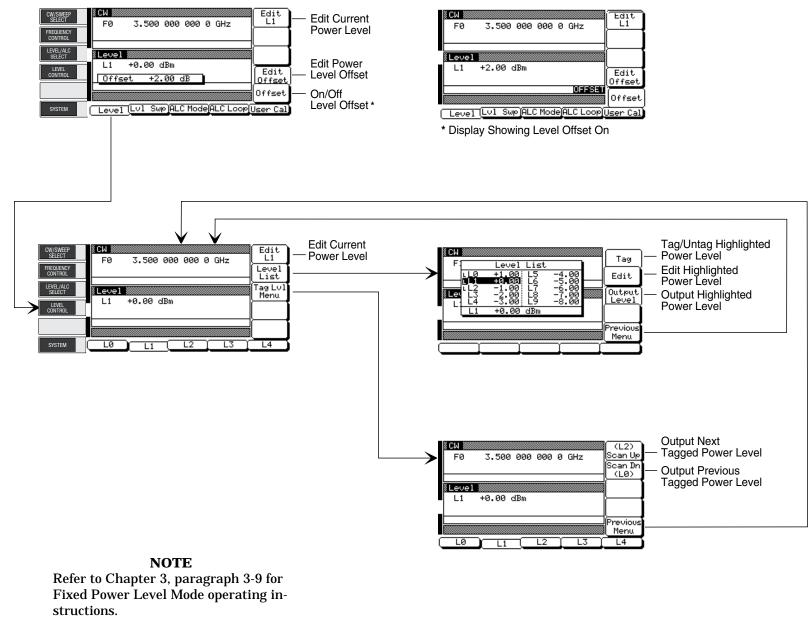
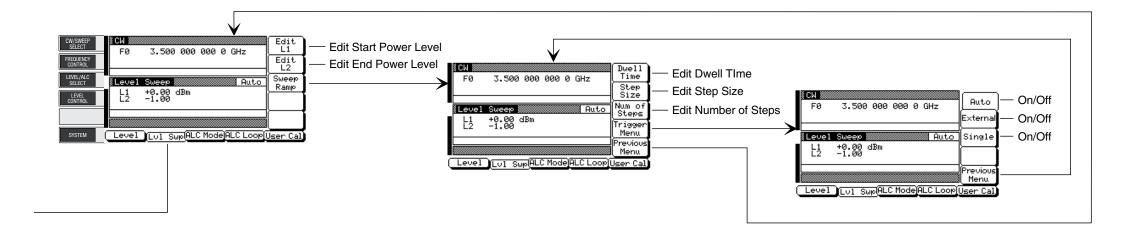
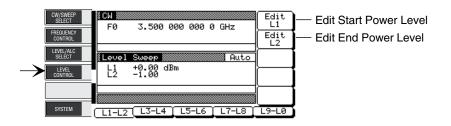

operating instructions.

Figure 4-4. Manual Sweep Frequency Mode Menu Map

MANUAL SWEEP FREQUENCY MODE

NOTE Refer to Chapter 3, paragraph 3-8 for Manual Sweep Frequency Mode

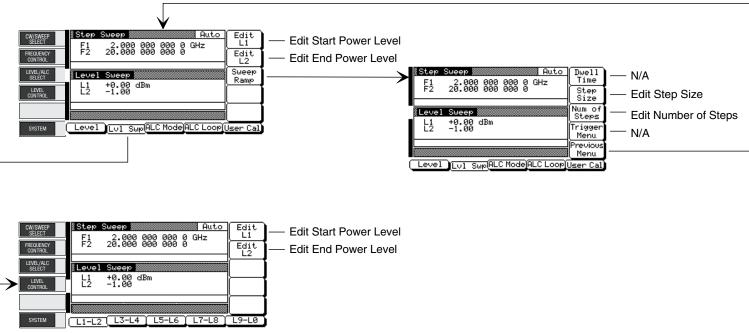

680XXB OM

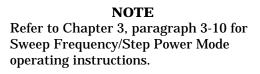


FIXED POWER **LEVEL MODE**

Figure 4-5. Fixed Power Level Mode Menu Map

LOCAL OPERATION –MENU MAPS

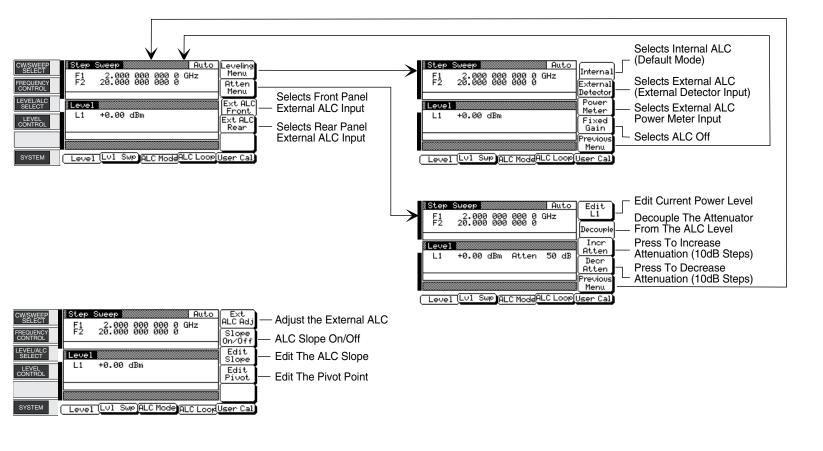



Figure 4-6. CW Power Sweep Mode Menu Map

CW POWER SWEEP MODE

NOTE Refer to Chapter 3, paragraph 3-10 for CW Power Sweep Mode operating instructions.

680XXB OM



SWEEP FREQUENCY/ STEP POWER MODE

Figure 4-7. Sweep Frequency/Step Power Mode Menu Map

LOCAL OPERATION -MENU MAPS

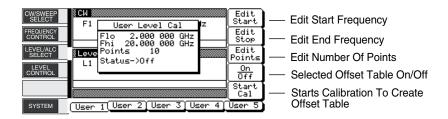
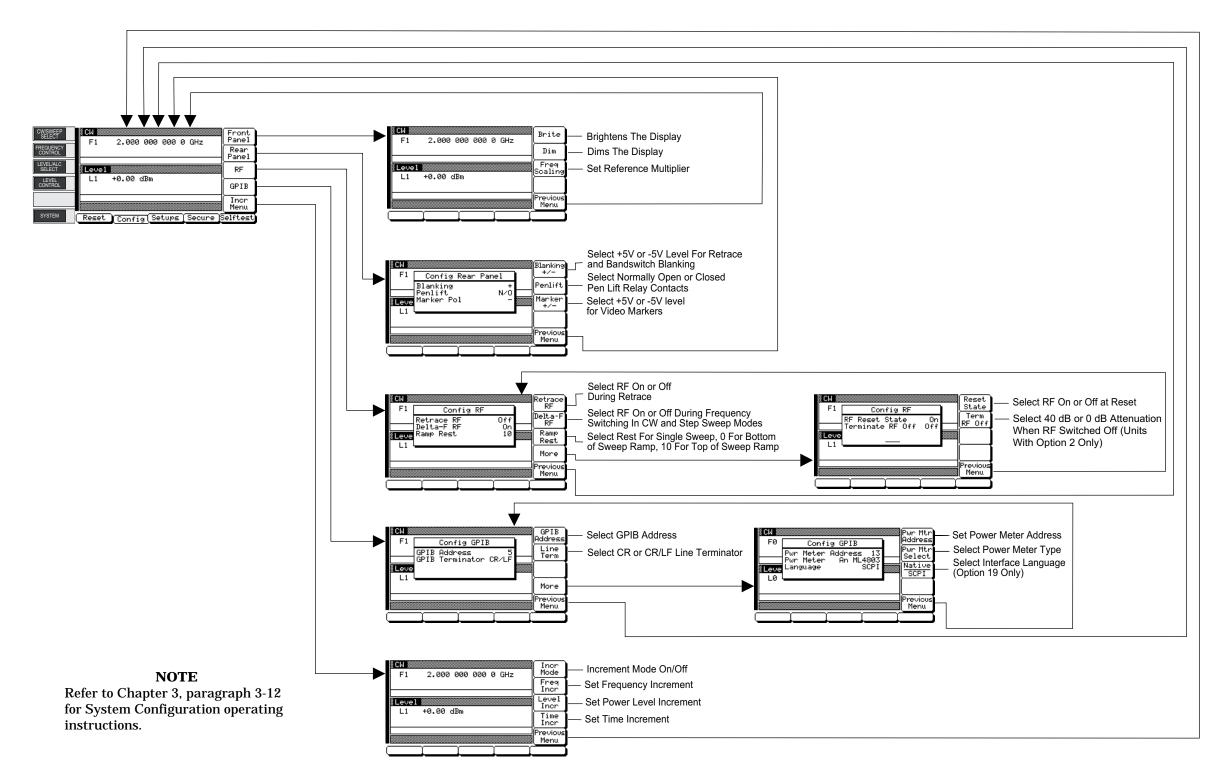



Figure 4-8. Leveling Modes Menu Map

NOTE

Refer to Chapter 3, paragraph 3-11 for Leveling Modes operating instructions.

SYSTEM CONFIGURATION

Figure 4-9. System Configuration Menu Map

Chapter 5 Operation Verification

Table of Contents

5-1	INTRODUCTION
5-2	TEST EQUIPMENT
5-3	TEST RECORDS
5-4	INITIAL 680XXB CHECKOUT
	Power Up 5-4 Self Test 5-4 Resetting the 680XXB 5-4 Warmup Time 5-4
5-5	CW FREQUENCY ACCURACY TEST. 5-5 Test Setup. 5-5 Test Procedure. 5-6
5-6	POWER LEVEL ACCURACY AND FLATNESS TESTS5-13Test Setup5-13Power Level Accuracy Test Procedure5-14Power Level Flatness Test Procedure5-15

Chapter 5 Operation Verification

This chapter contains three operation verification tests the	nat can be
used to verify Series 680XXB Synthesized CW Generator	operation.

Setup instructions and performance procedures are included for each test. The results can be compared with the specified limits that are shown on the test record forms that are provided for each test.

Table 5-1 lists the recommended test equipment for performing the operation verification tests in this chapter.

Instrument	Critical Specification	Recommended Manufacturer/Model
Frequency Counter, with Cable Kit and External Mixer	<i>Range:</i> 0.01 to 65 GHz <i>Input Z: 50</i> Ω <i>Resolution:</i> 1 Hz <i>Other:</i> External Time Base Input	EIP Microwave, Inc. Models 538B, 548B, or 578B, with Cable Kit: Option 590 and External Mixer: Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz) Option 93 (60 to 90 GHz)
Power Meter, with Power Sensor	<i>Range:</i> –30 to +20 dBm (1μW to 100 mW)	Hewlett-Packard Model 437B, with Power Sensor: HP 8487A (0.01 to 50 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: 2 mV/ di- vision Horiz Sensitivity: 50 ns/ divi- sion	Tektronix, Inc. Model TAS485
Adapter	K (male) to 2.4 mm (female) Adapts the Power Sensor, HP 8487A, to the 680XXB RF OUTPUT connector (≤40 GHz models)	Hewlett-Packard Part Number: HP 11904D

Table 5-1. Recommended Test Equipment

5-3 TEST RECORDS

5-1 INTRODUCTION

5-2 TEST EQUIPMENT

Tables 5-2 and 5-3 contain test record forms that can be photocopied and used to record the results of operational verification testing of your 680XXB. These tables are included as part of the operational

OPERATION VERIFICATION		INITIAL 680XXB Checkout
	verification test 680XXB models	procedures and contain test information for all
5-4 INITIAL 680XXB CHECKOUT	an initial checko consists of apply	the operation verification tests in this chapter, perform out of the 680XXB to be tested. This initial checkout ying power to the CW generator, verifying that it and resetting it to the factory default parameters.
	Power Up	First, verify that the rear panel line voltage selector is set for the correct line voltage, then connect the 680XXB to the power source. This automatically places the CW generator in operation (front panel OPERATE LED on).
		During power up, the CW generator loads its operat- ing program then returns to the exact setup it was in when last turned off.
	Self Test	Next, perform a self-test of the 680XXB to insure proper operation of the instrument PCBs and other internal assemblies.
		To self-test the CW generator, press SYSTEM . Then, press the System Menu soft-key Selftest . When the self-test is complete, the instrument dis- plays the main CW menu.
		NOTE Error conditions detected during self-test are displayed as error messages on the data display. They should be corrected before continuing. Refer to Chapter 6 for a listing of error messages and descrip- tions.
	Resetting the 680XXB	The CW generator should be reset to the factory- selected default parameters before commencing op- eration verification testing.
		To reset the 680XXB, first press SYSTEM , then press Reset . The CW generator resets to the CW frequency mode and displays the CW Menu.
	Warmup Time	When the CW generator is turned on, allow one hour of warmup time before performing operational verification testing. This will assure stable opera- tion of the instrument.

5-5 CW FREQUENCY ACCURACY TEST

The following test verifies that the CW frequency output of the 680XXB is within accuracy specifications. Table 5-2, beginning on page 5-7, contains test records that you can copy and use to record test results for this test. Test records for standard 680XXB models are contained in Table 5-2A; test records for 680XXB models with Option 11 are contained in Table 5-2B.

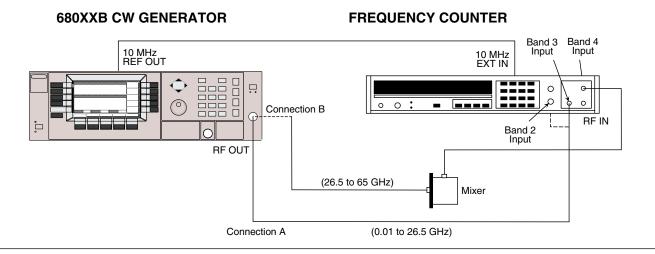
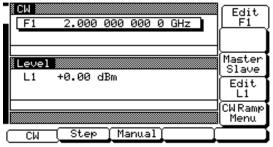


Figure 5-1. Equipment Setup for CW Frequency Accuracy Test

Test Setup

Connect the equipment, shown in Figure 5-1, as follows:

Step 1 Connect the 680XXB rear panel 10 MHz REF OUT to the Frequency Counter 10 MHz External Reference input. If the Frequency Counter has an INT/EXT toggle switch, ensure the switch is set to EXT.


Step 2 Connect the 680XXB RF OUTPUT to the Frequency Counter RF Input as follows:

- **a.** For measuring frequencies of 0.01 to 1.0 GHz, connect to the Band 2 input (Connection A).
- **b.** For measuring frequencies of 1.0 to 26.5 GHz, connect to the Band 3 input (Connection A).
- c. For measuring frequencies of 26.5 to 65.0 GHz, connect to the Band 4 input as shown in Connection B using the appropriate waveguide mixer; Option 91 (26.5 to 40 GHz), Option 92 (40 to 60 GHz), or Option 93 (60 to 90 GHz).

Test Procedure The following procedure tests both the coarse and fine loops to verify the accuracy of the CW frequency output.

Step 1 Set up the 680XXB as follows:

a. Reset the instrument by pressing **SYSTEM**, then **Reset**. Upon reset, the CW Menu is displayed.

b. Press Edit F1 to open the current frequency parameter for editing.

- **c.** Set F1 to the first test frequency for the model being tested (see Table 5-2A for standard models; see Table 5-2B for models with Option 11).
- **Step 2** Verify that the Frequency Counter reading meets specifications (±100 Hz of the value shown on the test record for standard models; ±10 Hz for instruments with Option 11).
- **Step 3** Record the Frequency Counter reading on the test record (Table 5-2A or Table 5-2B).

NOTE

The Frequency Counter reading is typically within ± 1 Hz. Differences of a few Hertz can be caused by noise or counter limitations. Differences of $\geq \pm 100$ Hz ($\geq \pm 10$ Hz for instruments with Option 11) indicate a frequency synthesis problem.

- **Step 4** Set F1 to the next test frequency on the test record and record the Frequency Counter reading.
- *Step 5* Repeat step 4 until all frequencies listed on the test record have been recorded.

CW FREQUENCY ACCURACY TEST

odel 680 B	Serial No.	Date	
68037B / 68045B / 68	3047B	68053B / 68055B / 68059B	
2.000 000 000*	2.000	000 000*	
5.000 000 000	5.000	000 000	
8.000 000 000		000 000	
11.000 000 000	11.00	000 000	
14.000 000 000	14.00	0 000 000	
17.000 000 000	17.00	0 000 000	
20.000 000 000	20.00	0 000 000	
	23.00	0 000 000	
	26.50	0 000 000	
2.000 001 000			
2.000 002 000			
2.000 003 000	2.000	001 000	
2.000 004 000	2.000	002 000	
2.000 005 000	2.000	003 000	
2.000 006 000	2.000	004 000	
2.000 007 000	2.000	005 000	
2.000 008 000	2.000	006 000	
2.000 009 000	2.000	007 000	
2.000 010 000	2.000	008 000	
	2.000	009 000	
	2.000	010 000	

Table 5-2A. CW Frequency Accuracy Test Record (for Standard Models) (1 of 3)

* Specification for all frequencies listed above is ±100 Hz. All frequencies are in GHz.

CW FREQUENCY ACCURACY TEST

68063B / 6806 2.000 000 000*	68069B	68075B / 68077B	
2.000 000 000*			
		2.000 000 000*	
5.000 000 000		6.000 000 000	
8.000 000 000		10.000 000 000	
11.000 000 000		14.000 000 000	
14.000 000 000		18.000 000 000	
17.000 000 000		22.000 000 000	
20.000 000 000		26.000 000 000	
23.000 000 000		30.000 000 000	
26.000 000 000		34.000 000 000	
29.000 000 000		38.000 000 000	
32.000 000 000		42.000 000 000	
35.000 000 000		46.000 000 000	
38.000 000 000		50.000 000 000	
40.000 000 000			
2.000 001 000		2.000 001 000	
2.000 002 000		2.000 002 000	
2.000 003 000		2.000 003 000	
2.000 003 000		2.000 004 000	
2.000 005 000		2.000 005 000	
2.000 006 000		2.000 006 000	
2.000 007 000		2.000 007 000	·
2.000 007 000		2.000 007 000	
2.000 008 000			
2.000 009 000		2.000 009 000	

Table 5-2A. CW Frequency Accuracy Test Record (for Standard Models) (2 of 3)

* Specification for all frequencies listed above is ±100 Hz. All frequencies are in GHz.

CW FREQUENCY ACCURACY TEST

odel 680 B	Serial No.	Date	
680855	3 / 68087B	68095B / 68097B	
2.000 000 000*		2.000 000 000*	
6.000 000 000 _		6.000 000 000	
10.000 000 000 _		10.000 000 000	
14.000 000 000 _		14.000 000 000	
18.000 000 000 _		18.000 000 000	
22.000 000 000		22.000 000 000	
26.000 000 000		26.000 000 000	
30.000 000 000 _		30.000 000 000	
34.000 000 000		34.000 000 000	
38.000 000 000 _		38.000 000 000	
42.000 000 000		42.000 000 000	
46.000 000 000		46.000 000 000	
50.000 000 000 _		50.000 000 000	
54.000 000 000		54.000 000 000	
58.000 000 000 _		58.000 000 000	
60.000 000 000 _		62.000 000 000	
		65.000 000 000	
2.000 001 000 _		2.000 001 000	
2.000 002 000 _		2.000 002 000	
2.000 003 000 _		2.000 003 000	
2.000 004 000 _		2.000 004 000	
2.000 005 000 _		2.000 005 000	
2.000 006 000 _		2.000 006 000	
2.000 007 000 _		2.000 007 000	
2.000 008 000 _		2.000 008 000	
2.000 009 000		2.000 009 000	
2.000 010 000 _		2.000 010 000	

Table 5-2A. CW Frequency Accuracy Test Record (for Standard Models) (3 of 3)

* Specification for all frequencies listed above is ±100 Hz. All frequencies are in GHz.

CW FREQUENCY ACCURACY TEST

odel 680 B	Serial No Date
68037B / 68045B / 680	047B 68053B / 68055B / 68059B
2.000 000 000 0*	2.000 000 00*
5.000 000 000 0	5.000 000 000 0
8.000 000 000 0	8.000 000 000 0
11.000 000 000 0	11.000 000 00
14.000 000 000 0	14.000 000 000 0
17.000 000 000 0	17.000 000 000 0
20.000 000 000 0	20.000 000 000 0
	23.000 000 000 0
	26.500 000 000 0
2.000 000 100 0	
2.000 000 200 0	
2.000 000 300 0	2.000 000 100 0
2.000 000 400 0	2.000 000 200 0
2.000 000 500 0	2.000 000 300 0
2.000 000 600 0	2.000 000 400 0
2.000 000 700 0	2.000 000 500 0
2.000 000 800 0	2.000 000 600 0
2.000 000 900 0	2.000 000 700 0
2.000 001 000 0	2.000 000 800 0
	2.000 000 900 0
	2.000 001 000 0

Table 5-2B. CW Frequency Accuracy Test Record (for Models with Option 11) (1 of 3)

 * Specification for all frequencies listed above is ±10 Hz. All frequencies are in GHz.

CW FREQUENCY ACCURACY TEST

del 680 B	Serial No.	Date
68063B / 68	065B / 68069B	68075B / 68077B
2.000 000 000 0*		2.000 000 000 0*
5.000 000 000 0		6.000 000 000 0
8.000 000 000 0 _		10.000 000 000 0
11.000 000 000 0		14.000 000 000 0
14.000 000 000 0 _		18.000 000 000 0
17.000 000 000 0		22.000 000 000 0
20.000 000 000 0 _		26.000 000 000 0
23.000 000 000 0 _		30.000 000 000 0
26.000 000 000 0		34.000 000 000 0
29.000 000 000 0		38.000 000 000 0
32.000 000 000 0		42.000 000 000 0
35.000 000 000 0		46.000 000 000 0
38.000 000 000 0		50.000 000 000 0
40.000 000 000 0		
2.000 000 100 0 _		2.000 000 100 0
2.000 000 200 0 _		2.000 000 200 0
2.000 000 300 0		2.000 000 300 0
2.000 000 400 0		2.000 000 400 0
2.000 000 500 0		2.000 000 500 0
2.000 000 600 0		2.000 000 600 0
2.000 000 700 0		2.000 000 700 0
2.000 000 800 0		2.000 000 800 0
2.000 000 900 0 _		2.000 000 900 0
2.000 001 000 0 _		2.000 001 000 0

Figure 5-2B. CW Frequency Accuracy Test Record (for Models with Option 11) (2 of 3)

* Specification for all frequencies listed above is ±10 Hz. All frequencies are in GHz.

CW FREQUENCY ACCURACY TEST

odel 680 B	Serial No.	Date	
68085E	3 / 68087B	68095B / 68097B	
2.000 000 000 0*		2.000 000 000 0*	
6.000 000 000 0		6.000 000 000 0	
10.000 000 000 0		10.000 000 000 0	
14.000 000 000 0		14.000 000 000 0	
18.000 000 000 0		18.000 000 000 0	
22.000 000 000 0		22.000 000 000 0	
26.000 000 000 0		26.000 000 000 0	
30.000 000 000 0		30.000 000 000 0	
34.000 000 000 0 _		34.000 000 000 0	
38.000 000 000 0		38.000 000 000 0	
42.000 000 000 0		42.000 000 000 0	
46.000 000 000 0		46.000 000 000 0	
50.000 000 000 0 _		50.000 000 000 0	
54.000 000 000 0		54.000 000 000 0	
58.000 000 000 0 _		58.000 000 000 0	
60.000 000 000 0		62.000 000 000 0	
		65.000 000 000 0	
2.000 000 100 0		2.000 000 100 0	
2.000 000 200 0		2.000 000 200 0	
2.000 000 300 0 _		2.000 000 300 0	
2.000 000 400 0		2.000 000 400 0	
2.000 000 500 0		2.000 000 500 0	
2.000 000 600 0		2.000 000 600 0	
2.000 000 700 0		2.000 000 700 0	
2.000 000 800 0		2.000 000 800 0	
2.000 000 900 0		2.000 000 900 0	
2.000 001 000 0		2.000 001 000 0	

Table 5-2B. CW Frequency Accuracy Test Record (for Models with Option 11) (3 of 3)

 * Specification for all frequencies listed above is ± 10 Hz. All frequencies are in GHz.

5-6 POWER LEVEL ACCURACY AND FLATNESS TESTS

These tests verify that the power level accuracy and flatness of the 680XXB meet specifications. Table 5-3, beginning on page 5-17, contains test records that you can copy and use to record test results for these tests. Test records are provided for each 680XXB model configuration.

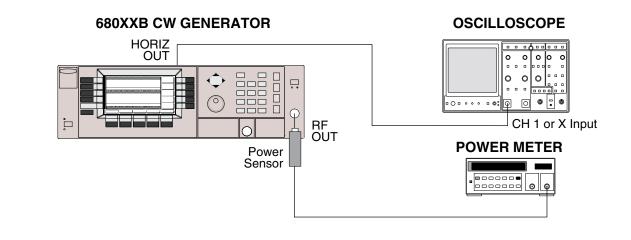


Figure 5-2. Equipment Setup for Power Level Accuracy and Flatness Tests

Test Setup

Connect the equipment, shown in Figure 5-2, as follows:

- *Step 1* Calibrate the Power Meter with the Power Sensor.
- **Step 2** Connect the Power Sensor to the RF OUT-PUT of the 680XXB.

NOTE

For ≤40 GHz models, use the K (male) to 2.4 mm (female) adapter to connect the Power Sensor to the RF OUTPUT connector.

Step 3 Connect the 680XXB rear panel HORIZ OUT to the Oscilloscope CH.1 input (X input).

NOTE

Before starting these procedures, locate the test record in Table 5-3 for the particular 680XXB model configuration being tested.

POWER LEVEL ACCURACY AND FLATNESS TESTS

Power Level
Accuracy
Test Proce-
dure

Power level accuracy is checked by stepping the power down in 1 dB increments from its maximum rated power level.

Step 1 Set up the 680XXB as follows:

a. Reset the instrument by pressing **SYSTEM**, then **Reset**. The CW Menu is displayed.

2.000 000 000 0 GHz	Edit F1
+0.00 dBm	Master Slave Edit
	L1 CWRamp
Coton (Menuel)	Menu

- **b.** Press Edit F1 to open the current frequency parameter for editing.
- **c.** Set F1 to the CW frequency noted on the test record for the model being tested.
- **d.** Press Edit L1 to open the current power level parameter for editing.
- **e.** Set L1 to the power level noted on the test record.

Step 2 Measure the output power level with the Power Meter and record the reading on the test record.

Step 3 Verify that the Power Meter reading meets the specifications stated on the test record.

Step 4 Set L1 to the next test power level. Record the Power Meter reading on the test record.

Step 5 Repeat step 4 for the other levels listed on the test record for the current CW frequency.

Step 6 Repeat steps 1 thru 5 for all CW frequencies listed on the test record.

POWER LEVEL ACCURACY AND FLATNESS TESTS

Power Level Flatness Test Procedure Power level flatness is checked by measuring the power level variation during a full band step sweep.

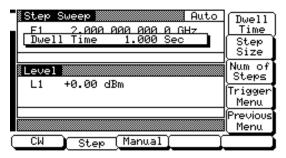
- *Step 1* Set up the 680XXB as follows for a step sweep power level flatness test:
 - a. Reset the instrument by pressing **SYSTEM**, then **Reset**. The CW Menu is displayed.
 - **b.** Press Step to place the 680XXB in the step sweep frequency mode and display the Step Sweep Menu.

Step Sweep Auto F1 2.000 000 000 0 F2 20.000 000 000 0 0	Edit F1
F2 20.000 000 000 0	Edit F2
Level	Sweep Ramp
	Edit L1
	Alt Swp Menu
CW Step Manual	

c. With the Step Sweep menu displayed, press the main menu key

The Sweep Frequency Control menu, shown below, is displayed.

Step Sweep Auto Fmn 0.010 000 000 0 Fmx 20.000 000 000 0	
Level L1 +0.00 dBm	Marker List Edit L1
Full (F1-F2) F3-F4) F5-dF)	F6-dF


- **d.** Press Full to select a full range frequency sweep.
- e. Press Edit L1 to open the current power level parameter for editing.
- **f.** Set L1 to the power level noted on the test record.

POWER LEVEL ACCURACY AND FLATNESS TESTS

g. Now, return to the Step Sweep menu by pressing the main menu key

h. At the Step Sweep menu, press Sweep Ramp to go to the Step Sweep Ramp menu.

- **i.** Press Dwell Time to open the dwell time-per-step parameter for editing.
- **j.** Set the dwell time to 1 second.

NOTE

Monitor the 680XXB's Horizontal Output on the Oscilloscope to determine sweep start and stop.

Step 2 As the 680XXB steps through the full frequency range, measure the maximum and minimum Power Meter readings and record the values on the test record. Verify that the variation (difference between the maximum and minimum readings) does not exceed the value noted on the test record.

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68037B	Serial No		Date
		el 68037B 2A Step Attenuator)	
		vel Accuracy * ency = 5.0 GHz)	
	Set Power	Measured Power	
	+13 dBm	dBm	
	+12 dBm	dBm	
	+11 dBm	dBm	
	+10 dBm	dBm	
	+ 9 dBm	dBm	
	+ 8 dBm	dBm	
	+ 7 dBm	dBm	
	+ 6 dBm	dBm	
	+ 5 dBm	dBm	
	+ 4 dBm	dBm	
	+ 3 dBm	dBm	
	+ 2 dBm	dBm	
	+ 1 dBm	dBm	
	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (1 of 46)

Set Power	Max Power	Min Power	Variation **	
+13 dBm	dBm	dBm	dB	
** Maximum variation i	s 1.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68037B	Serial No.		Date
		el 68037B A Step Attenuator)	
	Power Lev (CW Freque		
	Set Power	Measured Power	
	+11 dBm	dBm	
	+10 dBm	dBm	
	+ 9 dBm	dBm	
	+ 8 dBm	dBm	
	+ 7 dBm	dBm	
	+ 6 dBm	dBm	
	+ 5 dBm	dBm	
	+ 4 dBm	dBm	
	+ 3 dBm	dBm	
	+ 2 dBm	dBm	
	+ 1 dBm	dBm	
	+ 0 dBm	dBm	
	– 1 dBm	dBm	
	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (2 of 46)

Set Power	Max Power	Min Power	Variation **
+11 dBm	dBm	dBm	dB
** Maximum variation is	1.6 dB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68037B w/Option 15A	Serial No		Date
		Option 15A High Power 2A Step Attenuator)	
	Power Level Accuracy * (CW Frequency = 5.0 GHz)		
	Set Power	Measured Power	
	+17 dBm	dBm	
	+16 dBm	dBm	
	+15 dBm	dBm	
	+14 dBm	dBm	
	+13 dBm	dBm	
	+12 dBm	dBm	
	+11 dBm	dBm	
	+10 dBm	dBm	
	+ 9 dBm	dBm	
	+ 8 dBm	dBm	
	+ 7 dBm	dBm	
	+ 6 dBm	dBm	
	+ 5 dBm	dBm	
	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (3 of 46)

Set Power	Max Power	Min Power	Variation **	
+17 dBm	dBm	dBm	dB	
** Maximum variation is 1	.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68037B w/Option 15A	Serial No		Date
		Option 15A High Power A Step Attenuator)	
		vel Accuracy * ency = 5.0 GHz)	
	Set Power	Measured Power	
	+15 dBm	dBm	
	+14 dBm	dBm	
	+13 dBm	dBm	
	+12 dBm	dBm	
	+11 dBm	dBm	
	+10 dBm	dBm	
	+ 9 dBm	dBm	
	+ 8 dBm	dBm	
	+ 7 dBm	dBm	
	+ 6 dBm	dBm	
	+ 5 dBm	dBm	
	+ 4 dBm	dBm	
	+ 3 dBm	dBm	
	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (4 of 46)

Set Power	Max Power	Min Power	Variation **	
+15 dBm	dBm	dBm	dB	
** Maximum variation	is 1.6 dB.			

_

POWER LEVEL ACCURACY AND FLATNESS TESTS

lodel 68045B	Ser	ial No		Date
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	
+11 dBm	dBm	+11 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (5 of 46)

Set Power	Max Power	Min Power	Variation **	
+13 dBm	dBm	dBm	dB	
** Maximum variation i	s 1.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

lodel 68045B	Ser	ial No		Date
			el 68045B A Step Attenuator)	
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+11 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	
+ 0 dBm	dBm	+ 0 dBm	dBm	
– 1 dBm	dBm	– 1 dBm	dBm	
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (6 of 46)

Set Power	Max Power	Min Power	Variation **	
+11 dBm	dBm	dBm	dB	
** Maximum variation is	1.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68045B	Model 68045B w/Option 15A Serial No Date					
	Model 68045B with Option 15A High Power (without Option 2A Step Attenuator)					
	vel Accuracy * ency = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)			
Set Power	Measured Power	Set Power	Measured Power			
+13 dBm	dBm	+17 dBm	dBm			
+12 dBm	dBm	+16 dBm	dBm			
+11 dBm	dBm	+15 dBm	dBm			
+10 dBm	dBm	+14 dBm	dBm			
+ 9 dBm	dBm	+13 dBm	dBm			
+ 8 dBm	dBm	+ 12dBm	dBm			
+ 7 dBm	dBm	+11 dBm	dBm			
+ 6 dBm	dBm	+10 dBm	dBm			
+ 5 dBm	dBm	+ 9 dBm	dBm			
+ 4 dBm	dBm	+ 8 dBm	dBm			
+ 3 dBm	dBm	+ 7dBm	dBm			
+ 2 dBm	dBm	+ 6 dBm	dBm			
+ 1 dBm	dBm	+ 5 dBm	dBm			
* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.			

Table 5-3. Power Level Accuracy and Flatness Test Record (7 of 46)

Set Power	Max Power	Min Power	Variation **
+13 dBm	dBm	dBm	dB
** Maximum variation is	1.6 dB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68045B	Model 68045B w/Option 15A Serial No Date				
	Mo		Option 15A High Power A Step Attenuator)		
	vel Accuracy * ency = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)		
Set Power	Measured Power	Set Power	Measured Power		
+11 dBm	dBm	+15 dBm	dBm		
+10 dBm	dBm	+14 dBm	dBm		
+ 9 dBm	dBm	+13 dBm	dBm		
+ 8 dBm	dBm	+12 dBm	dBm		
+ 7 dBm	dBm	+11 dBm	dBm		
+ 6 dBm	dBm	+10 dBm	dBm		
+ 5 dBm	dBm	+ 9 dBm	dBm		
+ 4 dBm	dBm	+ 8 dBm	dBm		
+ 3 dBm	dBm	+ 7 dBm	dBm		
+ 2 dBm	dBm	+ 6 dBm	dBm		
+ 1 dBm	dBm	+ 5 dBm	dBm		
+ 0 dBm	dBm	+ 4 dBm	dBm		
– 1 dBm	dBm	+ 3 dBm	dBm		
* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.		

Table 5-3. Power Level Accuracy and Flatness Test Record (8 of 46)

Set Power	Max Power	Min Power	Variation **
+11 dBm	dBm	dBm	dB
** Maximum variation is 1.6	dB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

del 68047B	Ser	ial No		Date
			el 68047B 2A Step Attenuator)	
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	
+11 dBm	dBm	+11 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	
		Power Le	evel Flatness	
Set Power	Max P	ower	Min Power	Variation **
+13 dBm		dBm	dBm	dB

Table 5-3. Power Level Accuracy and Flatness Test Record (9 of 46)

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68047B	Ser	ial No		Date
			el 68047B A Step Attenuator)	
	el Accuracy * ncy = 1.0 GHz)	Power Level Accuracy * (CW Frequency = 5.0 GHz)		
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+11 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	
+ 0 dBm	dBm	+ 0 dBm	dBm	
– 1 dBm	dBm	– 1 dBm	dBm	
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (10 of 46)

Set Power	Max Power	Min Power	Variation **		
+11 dBm	dBm	dBm	dB		
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20 GHz).					

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68047B	w/Option 15A Ser	ial No		Date
	Мо		Option 15A High Power 2A Step Attenuator)	
	vel Accuracy * ency = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+17 dBm	dBm	
+12 dBm	dBm	+16 dBm	dBm	
+11 dBm	dBm	+15 dBm	dBm	
+10 dBm	dBm	+14 dBm	dBm	
+ 9 dBm	dBm	+13 dBm	dBm	
+ 8 dBm	dBm	+ 12dBm	dBm	
+ 7 dBm	dBm	+11 dBm	dBm	
+ 6 dBm	dBm	+10 dBm	dBm	
+ 5 dBm	dBm	+ 9 dBm	dBm	
+ 4 dBm	dBm	+ 8 dBm	dBm	
+ 3 dBm	dBm	+ 7dBm	dBm	
+ 2 dBm	dBm	+ 6 dBm	dBm	
+ 1 dBm	dBm	+ 5 dBm	dBm	
* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (11 of 46)

Set Power	Max Power	Min Power	Variation **			
+13 dBm	dBm	dBm	dB			
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20 GHz).						

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68047B w/Option 15A Serial No. Date ___ Model 68047B with Option 15A High Power (with Option 2A Step Attenuator) **Power Level Accuracy * Power Level Accuracy *** (CW Frequency = 1.0 GHz) (CW Frequency = 5.0 GHz) Set Power **Measured Power** Set Power **Measured Power** +11 dBm dBm +15 dBm dBm +10 dBm dBm +14 dBm dBm + 9 dBm dBm +13 dBm dBm + 8 dBm __dBm +12 dBm _dBm ____dBm + 7 dBm ___dBm +11 dBm dBm + 6 dBm +10 dBm dBm + 5 dBm ___dBm ____dBm + 9 dBm + 4 dBm ___dBm + 8 dBm _dBm + 3 dBm dBm + 7 dBm _dBm + 2 dBm dBm + 6 dBm dBm + 1 dBm ____dBm + 5 dBm _dBm + 0 dBm dBm + 4 dBm dBm – 1 dBm dBm + 3 dBm dBm * Specification is ±1.0 dB. * Specification is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (12 of 46)

Set Power	Max Power	Min Power	Variation **
+11 dBm	dBm	dBm	dB
** Maximum variation is	s 4.0 dB (0.01 to 0.05 GHz); 1.6	dB (0.05 to 20 GHz).	

POWER LEVEL ACCURACY AND FLATNESS TESTS

lodel 68053B	Serial No.		Date		
		l 68053B 2A Step Attenuator)			
		Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 22.0 GHz)	
	Set Power	Measured Power	Set Power	Measured Powe	
	+ 9 dBm	dBm	+ 6 dBm	dBm	
	+ 8 dBm	dBm	+ 5 dBm	dBm	
	+ 7 dBm	dBm	+ 4 dBm	dBm	
	+ 6 dBm	dBm	+ 3 dBm	dBm	
	+ 5 dBm	dBm	+ 2 dBm	dBm	
	+ 4 dBm	dBm	+ 1 dBm	dBm	
	+ 3 dBm	dBm	+ 0 dBm	dBm	
	+ 2 dBm	dBm	– 1 dBm	dBm	
	+ 1 dBm	dBm	– 2 dBm	dBm	
	+ 0 dBm	dBm	– 3 dBm	dBm	
	– 1 dBm	dBm	– 4 dBm	dBm	
	– 2 dBm	dBm	– 5 dBm	dBm	
	– 3 dBm	dBm	– 6 dBm	dBm	
	* Specification	* Specification is ±1.0 dB.		* Specification is ±1.0 dB.	
	Power Le	evel Flatness			
Set Power	Max Power	Min Power	Variation **		
+ 6 dBm	dBm	dBm		dB	
** Maximum variation	is 1.6 dB.				

Table 5-3. Power Level Accuracy and Flatness Test Record (13 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68053B	Serial No		Date		
		el 68053B A Step Attenuator)			
		Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 22.0 GHz)	
	Set Power	Measured Power	Set Power	Measured Powe	
	+ 7 dBm	dBm	+ 3.5 dBm	dBm	
	+ 6 dBm	dBm	+ 2.5 dBm	dBm	
	+ 5 dBm	dBm	+ 1.5 dBm	dBm	
	+ 4 dBm	dBm	+ 0.5 dBm	dBm	
	+ 3 dBm	dBm	– 0.5 dBm	dBm	
	+ 2 dBm	dBm	– 1.5 dBm	dBm	
	+ 1 dBm	dBm	– 2.5 dBm	dBm	
	+ 0 dBm	dBm	– 3.5 dBm	dBm	
	– 1 dBm	dBm	– 4.5 dBm	dBm	
	– 2 dBm	dBm	– 5.5 dBm	dBm	
	– 3 dBm	dBm	– 6.5 dBm	dBm	
	– 4 dBm	dBm	– 7.5 dBm	dBm	
	– 5 dBm	dBm	– 8.5 dBm	dBm	
	* Specification	* Specification is ±1.0 dB.		* Specification is ±1.0 dB.	
	Power Le	vel Flatness)			
Set Power	Max Power	Min Power	Variation **		
+ 3.5 dBm	dBm	dBm	I	dB	

Table 5-3. Power Level Accuracy and Flatness Test Record (14 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68053B w/Option 15A	Serial No		Da	Date	
	Model 68053B with Option 15A High Power (without Option 2A Step Attenuator)				
	Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 22.0 GHz)		
	Set Power	Measured Power	Set Power	Measured Powe	
	+13 dBm	dBm	+10 dBm	dBm	
	+12 dBm	dBm	+ 9 dBm	dBm	
	+11 dBm	dBm	+ 8 dBm	dBm	
	+10 dBm	dBm	+ 7 dBm	dBm	
	+ 9 dBm	dBm	+ 6 dBm	dBm	
	+ 8 dBm	dBm	+ 5 dBm	dBm	
	+ 7 dBm	dBm	+ 4 dBm	dBm	
	+ 6 dBm	dBm	+ 3 dBm	dBm	
	+ 5 dBm	dBm	+ 2 dBm	dBm	
	+ 4 dBm	dBm	+ 1 dBm	dBm	
	+ 3 dBm	dBm	+ 0 dBm	dBm	
	+ 2 dBm	dBm	– 1 dBm	dBm	
	+ 1 dBm	dBm	– 2 dBm	dBm	
	* Specification is ±1.0 dB.		* Specification is ±1.0 dB.		
	Power Le	evel Flatness			
Set Power	lax Power	Min Power	Var	iation **	
+ 10 dBm	dBm	dBm		dB	

Table 5-3. Power Level Accuracy and Flatness Test Record (15 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68053B w/Option 15A	Serial No		Da	Date		
		I 68053B with Option 15A High Power (with Option 2A Step Attenuator)				
		vel Accuracy * ency = 5.0 GHz)		/el Accuracy * ncy = 22.0 GHz)		
	Set Power	Measured Power	Set Power	Measured Powe		
	+11 dBm	dBm	+ 7.5 dBm	dBm		
	+10 dBm	dBm	+ 6.5 dBm	dBm		
	+ 9 dBm	dBm	+ 5.5 dBm	dBm		
	+ 8 dBm	dBm	+ 4.5 dBm	dBm		
	+ 7 dBm	dBm	+ 3.5 dBm	dBm		
	+ 6 dBm	dBm	+ 2.5 dBm	dBm		
	+ 5 dBm	dBm	+ 1.5 dBm	dBm		
	+ 4 dBm	dBm	+ 0.5 dBm	dBm		
	+ 3 dBm	dBm	– 0.5 dBm	dBm		
	+ 2 dBm	dBm	– 1.5 dBm	dBm		
	+ 1 dBm	dBm	– 2.5 dBm	dBm		
	+ 0 dBm	dBm	– 3.5 dBm	dBm		
	– 1 dBm	dBm	– 4.5 dBm	dBm		
	* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.0 dB.		
	Power Le	evel Flatness				
Set Power	lax Power	Min Power	Var	iation **		
+ 7.5 dBm	dBm	dBm		dB		

Table 5-3. Power Level Accuracy and Flatness Test Record (16 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68055B	Ser	ial No		Dat	te
			el 68055B 2A Step Attenuator)		
Power Level Accuracy * (CW Frequency = 1.0 GHz)		Power Level Accuracy * (CW Frequency = 5.0 GHz)			vel Accuracy * ncy = 22.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+ 9 dBm	dBm	+ 6 dBm	dBm
+12 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm
+11 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 2 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 4 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 5 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 6 dBm	dBm
* Specification	* Specification is ±1.0 dB.		n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (17 of 46)

Set Power	Max Power	Min Power	Variation **
+ 6 dBm	dBm	dBm	dB
** Maximum variation is 1.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68055B	Ser	ial No		Dat	te
			el 68055B A Step Attenuator)		
Power Level Accuracy * (CW Frequency = 1.0 GHz)		Power Level Accuracy * (CW Frequency = 5.0 GHz)			vel Accuracy * ncy = 22.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Powe
+11 dBm	dBm	+ 7 dBm	dBm	+ 3.5 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 2.5 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 1.5 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 0.5 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	– 0.5 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1.5 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2.5 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3.5 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 4.5 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 5.5 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 6.5 dBm	dBm
+ 0 dBm	dBm	– 4 dBm	dBm	– 7.5 dBm	dBm
– 1 dBm	dBm	– 5 dBm	dBm	– 8.5 dBm	dBm
* Specification is ±1.0 dB.		* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.0 dB.
		Powerla	evel Flatness		

Table 5-3. Power Level Accuracy and Flatness Test Record (18 of 46)

Set Power	Max Power	Min Power	Variation **
+ 3.5 dBm	dBm	dBm	dB
** Maximum variation is 1.6 dB.			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68055B	w/Option 15A Ser	Dat	e			
Model 68055B with Option 15A High Power (without Option 2A Step Attenuator)						
	el Accuracy * ncy = 1.0 GHz)	vel Accuracy * ency = 5.0 GHz)		vel Accuracy * ncy = 22.0 GHz)		
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	+10 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	+ 9 dBm	dBm	
+11 dBm	dBm	+11 dBm	dBm	+ 8 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	+ 7 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 6 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	+ 2 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm	
* Specification	n is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.0 dB.	
Power Level Flatness						

Table 5-3. Power Level Accuracy and Flatness Test Record (19 of 46)

Set Power	Max Power	Min Power	Variation **
+ 10 dBm	dBm	dBm	dB
** Maximum variation is 1	.6 dB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68055B w/Option 15A Date __ Serial No. Model 68055B with Option 15A High Power (with Option 2A Step Attenuator) **Power Level Accuracy * Power Level Accuracy * Power Level Accuracy *** (CW Frequency = 1.0 GHz) (CW Frequency = 5.0 GHz) (CW Frequency = 22.0 GHz) Set Power **Measured Power** Set Power **Measured Power** Set Power **Measured Power** +11 dBm dBm +11 dBm dBm + 7.5 dBm dBm +10 dBm dBm +10 dBm dBm + 6.5 dBm dBm + 9 dBm dBm dBm dBm + 9 dBm + 5.5 dBm + 8 dBm _dBm + 8 dBm _dBm _dBm + 4.5 dBm ___dBm + 7 dBm + 7 dBm _dBm + 3.5 dBm ___dBm + 6 dBm dBm + 6 dBm dBm + 2.5 dBm dBm + 5 dBm ___dBm + 5 dBm _dBm + 1.5 dBm _dBm + 4 dBm _dBm + 4 dBm _dBm + 0.5 dBm dBm + 3 dBm dBm + 3 dBm _dBm – 0.5 dBm dBm + 2 dBm dBm + 2 dBm dBm – 1.5 dBm dBm + 1 dBm ____dBm + 1 dBm _dBm - 2.5 dBm _dBm _dBm + 0 dBm dBm + 0 dBm – 3.5 dBm dBm – 1 dBm dBm – 1 dBm dBm – 4.5 dBm dBm * Specification is ±1.0 dB. * Specification is ±1.0 dB. * Specification is ±1.0 dB. **Power Level Flatness**

Table 5-3. Power Level Accuracy and Flatness Test Record (20 of 46)

Set Power	Max Power	Min Power	Variation **
+ 7.5 dBm	dBm	dBm	dB
** Maximum variation is 1.	6 dB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

lodel 68059B	Ser	ial No		Dat	te
			el 68059B 2A Step Attenuator)		
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)		vel Accuracy * ency = 22.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Powe
+13 dBm	dBm	+ 9 dBm	dBm	+ 6 dBm	dBm
+12 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm
+11 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 2 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 4 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 5 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 6 dBm	dBm
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.
		Power Le	evel Flatness		
Set Power	Max Po	ower	Min Power	Var	iation **

___dBm

Table 5-3. Power Level Accuracy and Flatness Test Record (21 of 46)

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).

____dBm

+ 6 dBm

____dB

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68059B	Ser	ial No		Dat	te
			el 68059B A Step Attenuator)		
Power Level Accuracy * (CW Frequency = 1.0 GHz)			Power Level Accuracy * (CW Frequency = 5.0 GHz)		/el Accuracy * ncy = 22.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Powe
+11 dBm	dBm	+ 7 dBm	dBm	+ 3.5 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 2.5 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 1.5 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 0.5 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	– 0.5 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1.5 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2.5 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3.5 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 4.5 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 5.5 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 6.5 dBm	dBm
+ 0 dBm	dBm	– 4 dBm	dBm	– 7.5 dBm	dBm
– 1 dBm	dBm	– 5 dBm	dBm	– 8.5 dBm	dBm
* Specification is ±1.0 dB.		* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.0 dB.
		Power I 4	evel Flatness		

Table 5-3. Power Level Accuracy and Flatness Test Record (22 of 46)

Set Power	Max Power	Min Power	Variation **	
+ 3.5 dBm	dBm	dBm	dB	
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).				

_

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68059B	w/Option 15A Ser	Da	te			
Model 68059B with Option 15A High Power (without Option 2A Step Attenuator)						
Power Level Accuracy *Power Level Accuracy *Power Level Accuracy *(CW Frequency = 1.0 GHz)(CW Frequency = 5.0 GHz)(CW Frequency = 22.0 GHz)						
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	+10 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	+ 9 dBm	dBm	
+11 dBm	dBm	+11 dBm	dBm	+ 8 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	+ 7 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 6 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	+ 2 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm	
* Specificatior	n is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (23 of 46)

Set Power	Max Power	Min Power	Variation **		
+ 10 dBm	dBm	dBm	dB		
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).					

POWER LEVEL ACCURACY AND FLATNESS TESTS

Figure 5-3. Power Level Accuracy and Flatness Test Record (24 of 46)

Model 68059B	Model 68059B w/Option 15A Serial No				te	
Model 68059B with Option 15A High Power (with Option 2A Step Attenuator)						
	Power Level Accuracy *Power Level Accuracy *Power Level Accuracy *(CW Frequency = 1.0 GHz)(CW Frequency = 5.0 GHz)(CW Frequency = 22.0 GHz)					
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+11 dBm	dBm	+ 7.5 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	+ 6.5 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 5.5 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	+ 4.5 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	+ 3.5 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	+ 2.5 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	+ 1.5 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	+ 0.5 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	– 0.5 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	– 1.5 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	– 2.5 dBm	dBm	
+ 0 dBm	dBm	+ 0 dBm	dBm	– 3.5 dBm	dBm	
– 1 dBm	dBm	– 1 dBm	dBm	– 4.5 dBm	dBm	
* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.0 dB.	

Power Level Flatness

Set Power	Max Power	Min Power	Variation **
+ 7.5 dBm	dBm	dBm	dB

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68063B	Serial No.		Da	te		
Model 68063B (without Option 2B Step Attenuator)						
		vel Accuracy * ency = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)		
	Set Power	Measured Power	Set Power	Measured Powe		
	+ 9 dBm	dBm	+ 6 dBm	dBm		
	+ 8 dBm	dBm	+ 5 dBm	dBm		
	+ 7 dBm	dBm	+ 4 dBm	dBm		
	+ 6 dBm	dBm	+ 3 dBm	dBm		
	+ 5 dBm	dBm	+ 2dBm	dBm		
	+ 4 dBm	dBm	+ 1 dBm	dBm		
	+ 3 dBm	dBm	+ 0 dBm	dBm		
	+ 2 dBm	dBm	– 1 dBm	dBm		
	+ 1 dBm	dBm	– 2 dBm	dBm		
	+ 0 dBm	dBm	– 3 dBm	dBm		
	– 1 dBm	dBm	– 4 dBm	dBm		
	– 2 dBm	dBm	– 5 dBm	dBm		
	– 3 dBm	dBm	– 6 dBm	dBm		
	* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.		

Table 5-3. Power Level Accuracy and Flatness Test Record (25 of 46)

Set Power	Max Power	Min Power	Variation **		
+ 6 dBm	dBm	dBm	dB		
** Maximum variation is 1.6 dB.					

POWER LEVEL ACCURACY AND FLATNESS TESTS

	el 68063B		
	B Step Attenuator)		
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)	
Set Power	Set Power Measured Power		Measured Powe
+ 7 dBm	dBm	+ 3 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm
+ 0 dBm	dBm	– 4 dBm	dBm
– 1 dBm	dBm	– 5 dBm	dBm
– 2 dBm	dBm	– 6 dBm	dBm
– 3 dBm	dBm	– 7 dBm	dBm
– 4 dBm	dBm	– 8 dBm	dBm
– 5 dBm	dBm	– 9 dBm	dBm
* Specification	n is ±1.0 dB.	* Specification	n is ±1.0 dB.
	(CW Freque Set Power + 7 dBm + 6 dBm + 5 dBm + 4 dBm + 3 dBm + 2 dBm + 1 dBm + 0 dBm - 1 dBm - 2 dBm - 3 dBm - 4 dBm - 5 dBm * Specification	(CW Frequency = 5.0 GHz)Set PowerMeasured Power+ 7 dBmdBm+ 6 dBmdBm+ 6 dBmdBm+ 5 dBmdBm+ 5 dBmdBm+ 4 dBmdBm+ 3 dBmdBm+ 3 dBmdBm+ 2 dBmdBm+ 1 dBmdBm- 1 dBmdBm- 2 dBmdBm- 3 dBmdBm- 4 dBmdBm	(CW Frequency = 5.0 GHz) (CW Frequency = 5.0 GHz) Set Power Measured Power Set Power + 7 dBm dBm + 3 dBm + 6 dBm dBm + 2 dBm + 5 dBm dBm + 2 dBm + 4 dBm dBm + 1 dBm + 4 dBm dBm - 1 dBm + 3 dBm dBm - 1 dBm + 2 dBm dBm - 2 dBm + 1 dBm dBm - 2 dBm + 1 dBm dBm - 3 dBm + 0 dBm dBm - 4 dBm - 1 dBm dBm - 5 dBm - 2 dBm dBm - 6 dBm - 3 dBm dBm - 7 dBm - 4 dBm dBm - 8 dBm - 5 dBm dBm - 9 dBm * Specification is ±1.0 dB. * Specification

Table 5-3. Power Level Accuracy and Flatness Test Record (26 of 46)

 Set Power
 Max Power
 Min Power
 Variation **

 + 3 dBm
 _____dBm
 _____dBm
 _____dB

 ** Maximum variation is 1.6 dB.
 ______dBm
 ______dB

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68063B w/Option 15A	Serial No		Da	te
		Option 15A High Power 2B Step Attenuator)		
		vel Accuracy * ency = 5.0 GHz)		vel Accuracy * ency = 25.0 GHz)
	Set Power	Measured Power	Set Power	Measured Powe
	+13 dBm	dBm	+ 6 dBm	dBm
	+12 dBm	dBm	+ 5 dBm	dBm
	+11 dBm	dBm	+ 4 dBm	dBm
	+10 dBm	dBm	+ 3 dBm	dBm
	+ 9 dBm	dBm	+ 2 dBm	dBm
	+ 8 dBm	dBm	+ 1 dBm	dBm
	+ 7 dBm	dBm	+ 0 dBm	dBm
	+ 6 dBm	dBm	– 1 dBm	dBm
	+ 5 dBm	dBm	– 2 dBm	dBm
	+ 4 dBm	dBm	– 3 dBm	dBm
	+ 3 dBm	dBm	– 4 dBm	dBm
	+ 2 dBm	dBm	– 5 dBm	dBm
	+ 1 dBm	dBm	– 6 dBm	dBm
	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.
	Power Le	evel Flatness		
Set Power	Max Power	Min Power	Var	riation **
+ 6 dBm	dBm	dBm		dB

Table 5-3. Power Level Accuracy and Flatness Test Record (27 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

odel 68063B w/Option 15A	Serial No.		Da	te
		Option 15A High Power B Step Attenuator)		
		vel Accuracy * ency = 5.0 GHz)		/el Accuracy * ncy = 25.0 GHz)
	Set Power	Measured Power	Set Power	Measured Powe
	+11 dBm	dBm	+ 3 dBm	dBm
	+10 dBm	dBm	+ 2 dBm	dBm
	+ 9 dBm	dBm	+ 1 dBm	dBm
	+ 8 dBm	dBm	+ 0 dBm	dBm
	+ 7 dBm	dBm	– 1 dBm	dBm
	+ 6 dBm	dBm	– 2 dBm	dBm
	+ 5 dBm	dBm	– 3 dBm	dBm
	+ 4 dBm	dBm	– 4 dBm	dBm
	+ 3 dBm	dBm	– 5 dBm	dBm
	+ 2 dBm	dBm	– 6 dBm	dBm
	+ 1 dBm	dBm	– 7 dBm	dBm
	+ 0 dBm	dBm	– 8 dBm	dBm
	– 1 dBm	dBm	– 9 dBm	dBm
	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.
	Power Le	evel Flatness		
Set Power	lax Power	Min Power	Var	iation **
+ 3 dBm	dBm	dBm		dB

Table 5-3. Power Level Accuracy and Flatness Test Record (28 of 46)

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68065B	Seri	al No		Dat	e
			l 68065B 2B Step Attenuator)		
Power Level Accuracy *Power Level Accuracy *(CW Frequency = 1.0 GHz)(CW Frequency = 5.0 GHz)					el Accuracy * ncy = 25.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+ 9 dBm	dBm	+ 6dBm	dBm
+12 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm
+11 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 2dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 4 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 5 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 6 dBm	dBm
* Specification i	s ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (29 of 46)

Set Power	Max Power	Min Power	Variation **			
+ 6 dBm	dBm	dBm	dB			
** Maximum variation is 1.6 dB.						

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68065B	Ser	ial No		Da	te
			el 68065B B Step Attenuator)		
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)		/el Accuracy * ncy = 25.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+ 7 dBm	dBm	+ 3 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 2 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 1 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 0 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	– 1 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 2 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 3 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 4 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 5 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 6 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 7 dBm	dBm
+ 0 dBm	dBm	– 4 dBm	dBm	– 8 dBm	dBm
– 1 dBm	dBm	– 5 dBm	dBm	– 9 dBm	dBm
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (30 of 46)

Set Power	Max Power	Min Power	Variation **			
+ 3 dBm	dBm	dBm	dB			
** Maximum variation is 1.6 dB.						

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68065B	w/Option 15A Ser	ial No		Da	te	
	Model 68065B with Option 15A High Power (without Option 2B Step Attenuator)					
	•		Power Level Accuracy * (CW Frequency = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	+ 6 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	+ 5 dBm	dBm	
+11 dBm	dBm	+11 dBm	dBm	+ 4 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	+ 3 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 2 dBm	dBm	
+ 8 dBm	dBm	+ 8 dBm	dBm	+ 1 dBm	dBm	
+ 7 dBm	dBm	+ 7 dBm	dBm	+ 0 dBm	dBm	
+ 6 dBm	dBm	+ 6 dBm	dBm	– 1 dBm	dBm	
+ 5 dBm	dBm	+ 5 dBm	dBm	– 2 dBm	dBm	
+ 4 dBm	dBm	+ 4 dBm	dBm	– 3 dBm	dBm	
+ 3 dBm	dBm	+ 3 dBm	dBm	– 4 dBm	dBm	
+ 2 dBm	dBm	+ 2 dBm	dBm	– 5 dBm	dBm	
+ 1 dBm	dBm	+ 1 dBm	dBm	– 6 dBm	dBm	
* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	
		Bowerl	wal Elatnoss			

Table 5-3. Power Level Accuracy and Flatness Test Record (31 of 46)

Set Power	Max Power	Min Power	Variation **
+ 6 dBm	dBm	dBm	dB
** Maximum variation is 1.6 c	iB.		

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68065B w/Option 15A Serial No. Date _____ Model 68065B with Option 15A High Power (with Option 2B Step Attenuator) **Power Level Accuracy * Power Level Accuracy * Power Level Accuracy *** (CW Frequency = 1.0 GHz) (CW Frequency = 5.0 GHz) (CW Frequency = 25.0 GHz) Set Power **Measured Power** Set Power **Measured Power** Set Power **Measured Power** +11 dBm dBm +11 dBm dBm + 3 dBm dBm dBm +10 dBm +10 dBm dBm + 2 dBm dBm + 9 dBm dBm + 9 dBm dBm + 1 dBm dBm dBm + 8 dBm + 8 dBm _dBm + 0 dBm _dBm _dBm dBm + 7 dBm + 7 dBm – 1 dBm dBm + 6 dBm _dBm _dBm _dBm + 6 dBm – 2 dBm _dBm dBm + 5 dBm + 5 dBm _dBm - 3 dBm + 4 dBm dBm + 4 dBm dBm – 4 dBm dBm + 3 dBm ____dBm + 3 dBm _dBm – 5 dBm _dBm + 2 dBm dBm dBm + 2 dBm dBm - 6 dBm dBm + 1 dBm + 1 dBm dBm – 7 dBm dBm dBm dBm + 0 dBm + 0 dBm - 8 dBm dBm dBm – 9 dBm dBm - 1 dBm dBm – 1 dBm * Specification is ±1.0 dB. * Specification is ±1.0 dB. * Specification is ±1.0 dB. **Power Level Flatness** Set Power Max Power **Min Power** Variation **

dBm

_dBm

Table 5-3. Power Level Accuracy and Flatness Test Record (32 of 46)

___dB

+ 3 dBm

** Maximum variation is 1.6 dB.

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68069B	Seri	al No		Dat	e	
			l 68069B 2B Step Attenuator)			
Power Level Accuracy * (CW Frequency = 1.0 GHz)		Power Level Accuracy * (CW Frequency = 5.0 GHz)			Power Level Accuracy * (CW Frequency = 25.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+ 9 dBm	dBm	+ 6dBm	dBm	
+12 dBm	dBm	+ 8 dBm	dBm	+ 5 dBm	dBm	
+11 dBm	dBm	+ 7 dBm	dBm	+ 4 dBm	dBm	
+10 dBm	dBm	+ 6 dBm	dBm	+ 3 dBm	dBm	
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 2dBm	dBm	
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 1 dBm	dBm	
+ 7 dBm	dBm	+ 3 dBm	dBm	+ 0 dBm	dBm	
+ 6 dBm	dBm	+ 2 dBm	dBm	– 1 dBm	dBm	
+ 5 dBm	dBm	+ 1 dBm	dBm	– 2 dBm	dBm	
+ 4 dBm	dBm	+ 0 dBm	dBm	– 3 dBm	dBm	
+ 3 dBm	dBm	– 1 dBm	dBm	– 4 dBm	dBm	
+ 2 dBm	dBm	– 2 dBm	dBm	– 5 dBm	dBm	
+ 1 dBm	dBm	– 3 dBm	dBm	– 6 dBm	dBm	
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specificatior	n is ±1.0 dB.	

Table 5-3. Power Level Accuracy and Flatness Test Record (33 of 46)

Set Power	Max Power	Min Power	Variation **
+ 6 dBm	dBm	dBm	dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz).			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68069B	Ser	ial No		Dat	te
			el 68069B B Step Attenuator)		
	el Accuracy * ncy = 1.0 GHz)		vel Accuracy * ency = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+ 7 dBm	dBm	+ 3 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	+ 2 dBm	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 1 dBm	dBm
+ 8 dBm	dBm	+ 4 dBm	dBm	+ 0 dBm	dBm
+ 7 dBm	dBm	+ 3 dBm	dBm	– 1 dBm	dBm
+ 6 dBm	dBm	+ 2 dBm	dBm	– 2 dBm	dBm
+ 5 dBm	dBm	+ 1 dBm	dBm	– 3 dBm	dBm
+ 4 dBm	dBm	+ 0 dBm	dBm	– 4 dBm	dBm
+ 3 dBm	dBm	– 1 dBm	dBm	– 5 dBm	dBm
+ 2 dBm	dBm	– 2 dBm	dBm	– 6 dBm	dBm
+ 1 dBm	dBm	– 3 dBm	dBm	– 7 dBm	dBm
+ 0 dBm	dBm	– 4 dBm	dBm	– 8 dBm	dBm
– 1 dBm	dBm	– 5 dBm	dBm	– 9 dBm	dBm
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (34 of 46)

Set Power	Max Power	Min Power	Variation **
+ 3 dBm	dBm	dBm	dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz).			

_

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68069B	w/Option 15A Ser	Da	te		
			Option 15A High Power 2B Step Attenuator)	r	
	Power Level Accuracy *Power Lev(CW Frequency = 1.0 GHz)(CW Freque				vel Accuracy * ncy = 25.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+13 dBm	dBm	+ 6 dBm	dBm
+12 dBm	dBm	+12 dBm	dBm	+ 5 dBm	dBm
+11 dBm	dBm	+11 dBm	dBm	+ 4 dBm	dBm
+10 dBm	dBm	+10 dBm	dBm	+ 3 dBm	dBm
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 2 dBm	dBm
+ 8 dBm	dBm	+ 8 dBm	dBm	+ 1 dBm	dBm
+ 7 dBm	dBm	+ 7 dBm	dBm	+ 0 dBm	dBm
+ 6 dBm	dBm	+ 6 dBm	dBm	– 1 dBm	dBm
+ 5 dBm	dBm	+ 5 dBm	dBm	– 2 dBm	dBm
+ 4 dBm	dBm	+ 4 dBm	dBm	– 3 dBm	dBm
+ 3 dBm	dBm	+ 3 dBm	dBm	– 4 dBm	dBm
+ 2 dBm	dBm	+ 2 dBm	dBm	– 5 dBm	dBm
+ 1 dBm	dBm	+ 1 dBm	dBm	– 6 dBm	dBm
* Specificatior	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (35 of 46)

Set Power	Max Power	Min Power	Variation **
+ 6 dBm	dBm	dBm	dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz).			

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68069B w/Option 15A Date ___ Serial No. Model 68069B with Option 15A High Power (with Option 2B Step Attenuator) **Power Level Accuracy * Power Level Accuracy * Power Level Accuracy *** (CW Frequency = 1.0 GHz) (CW Frequency = 5.0 GHz) (CW Frequency = 25.0 GHz) Set Power **Measured Power** Set Power **Measured Power** Set Power **Measured Power** +11 dBm dBm +11 dBm dBm + 3 dBm dBm +10 dBm dBm +10 dBm dBm + 2 dBm dBm + 9 dBm dBm + 1 dBm _dBm + 9 dBm dBm + 8 dBm __dBm + 8 dBm _dBm + 0 dBm _dBm + 7 dBm ___dBm + 7 dBm _dBm – 1 dBm _dBm + 6 dBm dBm + 6 dBm dBm – 2 dBm dBm + 5 dBm dBm + 5 dBm _dBm – 3 dBm _dBm + 4 dBm __dBm + 4 dBm _dBm – 4 dBm dBm + 3 dBm dBm + 3 dBm _dBm – 5 dBm dBm + 2 dBm dBm + 2 dBm dBm - 6 dBm dBm + 1 dBm ____dBm + 1 dBm ____dBm – 7 dBm _dBm _dBm + 0 dBm dBm + 0 dBm – 8 dBm dBm - 1 dBm dBm – 1 dBm dBm – 9 dBm dBm * Specification is ±1.0 dB. * Specification is ±1.0 dB. * Specification is ±1.0 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (36 of 46)

Set Power	Max Power	Min Power	Variation **
+ 3 dBm	dBm	dBm	dB
** Maximum variation is 4.0	dB (0.01 to 0.05 GHz); 1.6 dB (0.	05 to 40 GHz).	

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68075B	Ser	ial No		Dat	te
			el 68075B 2C Step Attenuator)		
	el Accuracy * ncy = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)		vel Accuracy * ncy = 45.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	+ 2.5 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	+ 1.5 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	+ 0.5 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 0.5 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 1.5 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 2.5 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 3.5 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 4.5 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 5.5 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 6.5 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 7.5 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 8.5 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 9.5 dBm	dBm
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (37 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+ 2.5 dBm	dBm	dBm	dB
** Maximum variation is 1.6	dB (0.5 to 40 GHz); 2.2 dB (40 to	50 GHz).	

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68075B	Ser	ial No		Dat	te
			el 68075B C Step Attenuator)		
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)		Power Level Accuracy * (CW Frequency = 45.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	dBm	+ 0 dBm	dBm	– 1 dBm	dBm
+ 7.5 dBm	dBm	– 1 dBm	dBm	– 2 dBm	dBm
+ 6.5 dBm	dBm	– 2 dBm	dBm	– 3 dBm	dBm
+ 5.5 dBm	dBm	– 3 dBm	dBm	– 4 dBm	dBm
+ 4.5 dBm	dBm	– 4 dBm	dBm	– 5 dBm	dBm
+ 3.5 dBm	dBm	– 5 dBm	dBm	– 6 dBm	dBm
+ 2.5 dBm	dBm	– 6 dBm	dBm	– 7 dBm	dBm
+ 1.5 dBm	dBm	– 7 dBm	dBm	– 8 dBm	dBm
+ 0.5 dBm	dBm	– 8 dBm	dBm	– 9 dBm	dBm
– 0.5 dBm	dBm	– 9 dBm	dBm	–10 dBm	dBm
– 1.5 dBm	dBm	–10 dBm	dBm	–11 dBm	dBm
– 2.5 dBm	dBm	–11 dBm	dBm	–12 dBm	dBm
– 3.5 dBm	dBm	–12 dBm	dBm	–13 dBm	dBm
* Specification is ±1.0 dB. * S		* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (38 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **	
– 1 dBm	dBm	dBm	dB	

** Maximum variation is 1.6 dB (0.5 to 40 GHz); 2.2 dB (40 to 50 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68077B	Ser	rial No		Da	te
			el 68077B 2C Step Attenuator)		
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)			/el Accuracy * ncy = 45.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	+ 2.5 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	+ 1.5 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	+ 0.5 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 0.5 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 1.5 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 2.5 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 3.5 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 4.5 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 5.5 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 6.5 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 7.5 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 8.5 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 9.5 dBm	dBm
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specificatio	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (39 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+ 2.5 dBm	dBm	dBm	dB
** Movimum voriation			

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz); 2.2 dB (40 to 50 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68077B	Ser	ial No		Da	te
			el 68077B C Step Attenuator)		
Power Level Accuracy *Power Level Accuracy *(CW Frequency = 5.0 GHz)(CW Frequency = 25.0 GHz)			-	Power Level Accuracy * (CW Frequency = 45.0 GHz)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	dBm	+ 0 dBm	dBm	– 1 dBm	dBm
+ 7.5 dBm	dBm	– 1 dBm	dBm	– 2 dBm	dBm
+ 6.5 dBm	dBm	– 2 dBm	dBm	– 3 dBm	dBm
+ 5.5 dBm	dBm	– 3 dBm	dBm	– 4 dBm	dBm
+ 4.5 dBm	dBm	– 4 dBm	dBm	– 5 dBm	dBm
+ 3.5 dBm	dBm	– 5 dBm	dBm	– 6 dBm	dBm
+ 2.5 dBm	dBm	– 6 dBm	dBm	– 7 dBm	dBm
+ 1.5 dBm	dBm	– 7 dBm	dBm	– 8 dBm	dBm
+ 0.5 dBm	dBm	– 8 dBm	dBm	– 9 dBm	dBm
– 0.5 dBm	dBm	– 9 dBm	dBm	–10 dBm	dBm
– 1.5 dBm	dBm	–10 dBm	dBm	–11 dBm	dBm
– 2.5 dBm	dBm	–11 dBm	dBm	–12 dBm	dBm
– 3.5 dBm	dBm	–12 dBm	dBm	–13 dBm	dBm
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specificatio	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (40 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
– 1 dBm	dBm	dBm	dB
		/ ·- - · · · - · - ·- / ·-	

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz); 2.2 dB (40 to 50 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68085B	Seri	ial No		Dat	e
			l 68085B 2D Step Attenuator)		
	el Accuracy * ncy = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)		el Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	+ 2 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	+ 1 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	+ 0 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 1 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 2 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 3 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 4 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 5 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 6 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 7 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 8 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 9 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 10. dBm	dBm
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (41 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **	
+ 2.0 dBm	dBm	dBm	dB	

** Maximum variation is 1.6 dB (0.5 to 40 GHz); 2.2 dB (40 to 60 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68085B	Ser	ial No		Dat	te
			el 68085B D Step Attenuator)		
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)			/el Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	dBm	+ 0 dBm	dBm	– 1.5 dBm	dBm
+ 7.5 dBm	dBm	– 1 dBm	dBm	– 2.5 dBm	dBm
+ 6.5 dBm	dBm	– 2 dBm	dBm	– 3.5 dBm	dBm
+ 5.5 dBm	dBm	– 3 dBm	dBm	– 4.5 dBm	dBm
+ 4.5 dBm	dBm	– 4 dBm	dBm	– 5.5 dBm	dBm
+ 3.5 dBm	dBm	– 5 dBm	dBm	– 6.5 dBm	dBm
+ 2.5 dBm	dBm	– 6 dBm	dBm	– 7.5 dBm	dBm
+ 1.5 dBm	dBm	– 7 dBm	dBm	– 8.5 dBm	dBm
+ 0.5 dBm	dBm	– 8 dBm	dBm	– 9.5 dBm	dBm
– 0.5 dBm	dBm	– 9 dBm	dBm	–10.5 dBm	dBm
– 1.5 dBm	dBm	–10 dBm	dBm	–11.5 dBm	dBm
– 2.5 dBm	dBm	–11 dBm	dBm	–12.5 dBm	dBm
– 3.5 dBm	dBm	–12 dBm	dBm	–13.5 dBm	dBm
* Specification is ±1.0 dB.		* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (42 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **	
– 2 dBm	dBm	dBm	dB	
** Maximum variation is				

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68087B	Ser	ial No		Dat	te
			el 68087B 2D Step Attenuator)		
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)			/el Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	+ 2 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	+ 1 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	+ 0 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 1 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 2 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 3 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 4 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 5 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 6 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 7 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 8 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 9 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 10. dBm	dBm
* Specification	n is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (43 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+ 2.0 dBm	dBm	dBm	dB
** • •			

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz); 2.2 dB (40 to 60 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68087B	Ser	ial No		Dat	te
			el 68087B D Step Attenuator)		
	el Accuracy * ncy = 5.0 GHz)		Power Level Accuracy * (CW Frequency = 25.0 GHz)		/el Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	dBm	+ 0 dBm	dBm	– 1.5 dBm	dBm
+ 7.5 dBm	dBm	– 1 dBm	dBm	– 2.5 dBm	dBm
+ 6.5 dBm	dBm	– 2 dBm	dBm	– 3.5 dBm	dBm
+ 5.5 dBm	dBm	– 3 dBm	dBm	– 4.5 dBm	dBm
+ 4.5 dBm	dBm	– 4 dBm	dBm	– 5.5 dBm	dBm
+ 3.5 dBm	dBm	– 5 dBm	dBm	– 6.5 dBm	dBm
+ 2.5 dBm	dBm	– 6 dBm	dBm	– 7.5 dBm	dBm
+ 1.5 dBm	dBm	– 7 dBm	dBm	– 8.5 dBm	dBm
+ 0.5 dBm	dBm	– 8 dBm	dBm	– 9.5 dBm	dBm
– 0.5 dBm	dBm	– 9 dBm	dBm	–10.5 dBm	dBm
– 1.5 dBm	dBm	–10 dBm	dBm	–11.5 dBm	dBm
– 2.5 dBm	dBm	–11 dBm	dBm	–12.5 dBm	dBm
– 3.5 dBm	dBm	–12 dBm	dBm	–13.5 dBm	dBm
* Specification	is ±1.0 dB.	* Specificatio	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (44 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
– 2 dBm	dBm	dBm	dB
++ NA · · · · ·			

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz); 2.2 dB (40 to 60 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68095B	Ser	ial No		Dat	e
		Mode	el 68095B		
	el Accuracy * ncy = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)		vel Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	0 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	– 1 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	– 2 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 3 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 4 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 5 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 6 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 7 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 8 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 9 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 10 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 11 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 12 dBm	dBm
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (45 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
–2 dBm	dBm	dBm	dB

** Maximum variation is 1.6 dB (0.5 to 40 GHz); 2.2 dB (40 to 65 GHz).

POWER LEVEL ACCURACY AND FLATNESS TESTS

Model 68097B	Ser	ial No		Dat	e
		Mode	el 68097B		
	el Accuracy * ncy = 5.0 GHz)		vel Accuracy * ncy = 25.0 GHz)		vel Accuracy * ncy = 50.0 GHz)
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	0 dBm	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	– 1 dBm	dBm
+ 8 dBm	dBm	+ 0.5 dBm	dBm	– 2 dBm	dBm
+ 7 dBm	dBm	– 0.5 dBm	dBm	– 3 dBm	dBm
+ 6 dBm	dBm	– 1.5 dBm	dBm	– 4 dBm	dBm
+ 5 dBm	dBm	– 2.5 dBm	dBm	– 5 dBm	dBm
+ 4 dBm	dBm	– 3.5 dBm	dBm	– 6 dBm	dBm
+ 3 dBm	dBm	– 4.5 dBm	dBm	– 7 dBm	dBm
+ 2 dBm	dBm	– 5.5 dBm	dBm	– 8 dBm	dBm
+ 1 dBm	dBm	– 6.5 dBm	dBm	– 9 dBm	dBm
+ 0 dBm	dBm	– 7.5 dBm	dBm	– 10 dBm	dBm
– 1 dBm	dBm	– 8.5 dBm	dBm	– 11 dBm	dBm
– 2 dBm	dBm	– 9.5 dBm	dBm	– 12 dBm	dBm
* Specification	is ±1.0 dB.	* Specification	n is ±1.0 dB.	* Specification	n is ±1.5 dB.

Table 5-3. Power Level Accuracy and Flatness Test Record (46 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
–2 dBm	dBm	dBm	dB
** Maximum variation is 4.0 d	B (0.01 to 0.05 GHz); 1.6 dB (0.0	5 to 40 GHz); 2.2 dB (40 to 65	i GHz).

Chapter 6 Operator Maintenance

Table of Contents

INTRODUCTION
ERROR AND WARNING/STATUS MESSAGES 6-3
Self-Test Error Messages 6-3 Normal Operation
Error and Warning/Status Messages 6-8
TROUBLESHOOTING 6-10
ROUTINE MAINTENANCE 6-13
Cleaning the Fan Filter 6-13
Cleaning the Data Display 6-14
Replacing the Line Fuse 6-14

Chapter 6 Operator Maintenance

- This chapter provides the information necessary for operator maintenance of the CW generator. Operator maintenance is limited to troubleshooting and repairs that can be made without removing the instrument covers.
- 6-2 ERROR AND WARNING/STATUS MESSAGES

6-1 INTRODUCTION

During normal operation, the 680XXB generates error messages to indicate internal malfunctions, abnormal signal generator operations, or invalid signal inputs or data entries. It also displays warning messages to alert the operator to conditions that could result in inaccurate CW generator output. In addition, status messages are displayed to remind the operator of current menu selections or settings.

Self-Test Error Messages The 680XXB firmware includes internal diagnostics that self-test the instrument. These self-test diagnostics perform a brief go/no-go test of most of the instrument PCBs and other internal assemblies.

CAUTION

During self-test with RF OUTPUT set to ON, the output power level is set to 0 dBm. Always disconnect sensitive equipment from the unit before performing self-test.

You can perform a CW generator self-test at any time during normal operation by pressing **SYSTEM** and then the System Menu soft-key Selftest.

If the CW generator fails self-test, an error message(s) is displayed on the front panel data display. These error messages describe the malfunction and, in most cases, provide an indication of what has failed. Table 6-1, next page, is a summary listing of the self-test error messages. Included for each is a description of the probable cause(s), whether or not the 680XXB is still operable, and if operable, what operational degradation can be expected.

ERROR AND WARNING/ STATUS MESSAGES

WARNING

Self-test error messages normally indicate the failure of an internal component or assembly of the CW generator. There are no operator serviceable components inside. Refer servicing of the instrument to qualified service technicians.

To prevent the risk of electrical shock or damage to precision components, *do not* remove the equipment covers.

Table 6-1.	Self-Test Error Messages	(1	of 4)
------------	--------------------------	----	-------

Error Message	Description/Remarks
Error 100 DVM Ground Offset Failed	Indicates a calibration-related problem. Do Not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 101 DVM Positive 10V Reference	Indicates either a calibration-related problem or a defective+10 Volt reference. Do not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 102 DVM Negative 10V Reference	Indicates either a calibration-related problem or a defective –10 Volt reference . Do not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 105 Power Supply Voltage(s) out of Regulation	Indicates one or more of the voltages from the power supply are out of regulation. Do Not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 106 Power Supply not Locked	Indicates the power supply is not phase-locked to the 400 kHz reference frequency. The 680XXB is still operable in a degraded mode. The RF output may contain more spurious signals than normal.
Error 107 Sweep Time Check Failed	Indicates the sweep timing is out of tolerance or has failed. The 680XXB is still operable in a degraded mode.
Error 108 Crystal Oven Cold	Indicates the 100 MHz crystal oven or the Option 16 high-stability 10 MHz crystal oscillator has not reached operating temperature. The 680XXB is still operable, but frequency accuracy and stability may be degraded.
Error 109 The 100MHz Reference is not Locked to the External Reference	Indicates the reference loop is not phase-locked to the external 10 MHz reference. The reference loop may phase-lock to the internal 100 MHz time base; conse- quently, the 680XXB would continue to operate normally.
Error 110 The 100MHz Reference is not Locked to the High Stability 10MHz Crystal Oscillator	Indicates the reference loop is not phase-locked to the optional, high stability 10 MHz crystal oscillator. The reference loop may phase-lock to the internal 100 MHz time base; consequently, the 680XXB would continue to operate normally.
Error 111 Fine Loop Osc Failed	Indicates one or more of the oscillators within the fine loop is not phase-locked. The 680XXB is still operable but the accuracy and stability of frequency outputs are greatly reduced.

Error Message	Description/Remarks
Error 112 Coarse Loop Osc Failed	Indicates the coarse loop oscillator is not phase-locked. The 680XXB is still oper- able but the accuracy and stability of the frequency outputs are greatly reduced.
Error 113 Yig Loop Osc Failed	Indicates the YIG loop is not phase-locked. The 680XXB is still operable but the accuracy and stability of the frequency outputs are greatly reduced.
Error 114 Down Converter LO not Locked	Indicates the local oscillator in the down converter assembly is not phase-locked. The 680XXB is still operable but the accuracy and stability of frequency outputs below 2 GHz is greatly reduced.
Error 115 Not Locked Indicator Failed	Indicates failure of the not phase-locked indicator circuit. The 680XXB is still operable but an error message will not appear on the data display when the output frequency is not phase-locked.
Error 116 FM Loop Gain Check Failed	Indicates FM loop has failed or the loop gain is out of tolerance. The 680XXB is still operable but frequency accuracy and stability are degraded.
Error 117 Linearizer Check Failed	Indicates a failure of the Linearizer DAC on the A12 PCB. The 680XXB is still operable but frequency accuracy of the RF output is degraded.
Error 118 Switchpoint DAC Failed	Indicates a failure of the Switchpoint DAC on the A12 PCB. The 680XXB is still operable but will not generate a CW Ramp.
Error 119 Center Frequency Circuits Failed	Indicates a failure of the center frequency circuitry on the A12 PCB. Do Not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 121 Unleveled Indicator Failed	Indicates failure of the not leveled detector circuitry on the A10 PCB. The 680XXE is still operable but a warning message will not appear when the RF output goes unleveled.
Error 122 Level Reference Failed	Indicates a failure of the level reference circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 123 Detector Log Amp Failed	Indicates a failure of the level detector log amplifier circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 124 Full Band Unlocked and Unleveled	Indicates a failure of both YIG-tuned oscillators. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.
Error 125 8.4 – 20 GHz Unlocked and Unleveled	Indicates a failure of the 8.4 to 20 GHz YIG-tuned oscillator. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.
Error 126 2 – 8.4 GHz Unlocked and Unleveled	Indicates a failure of the 2 to 8.4 GHz YIG-tuned oscillator. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.

Table 6-1. Self-Test Error Messages (3 of 4)

Error Message	Description/Remarks
Error 127 Detector Input Circuit Failed	Indicates a failure of the level detector input circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 128 .01 – 2 GHz Unleveled	Indicates a failure of the Down Converter leveling circuitry. The 680XXB operates normally but will have unleveled RF output in the 0.01 - 2 GHz frequency range.
Error 129 Switched Filter or Level Detector Failed	Indicates a failure of either the switched filter or level detector circuitry. The 680XXB may or may not produce an RF output. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 130 2 – 3.3 GH Switched Filter	Indicates a failure in the 2 - 3.3 GHz switched filter path within the switched filter assembly. The 680XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 131 3.3 – 5.5 GH Switched Filter	Indicates a failure in the 3.3 - 5.5 GHz switched filter path within the switched filter assembly. The 680XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 132 5.5 – 8.4 GH Switched Filter	Indicates a failure in the 5.5 - 8.4 GHz switched filter path within the switched filter assembly. The 680XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 133 8.4 – 13.25 GH Switched Filter	Indicates a failure in the 8.4 - 13.25 GHz switched filter path within the switched filter assembly. The 680XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 134 13.25 – 20 GH Switched Filter	Indicates a failure in the 13.25 - 20 GHz switched filter path within the switched filter assembly. The 680XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 135 Modulator or Driver Failed	Indicates a failure of the modulator in the switched filter assembly or the modulator driver circuitry on the A9 PCB. The 680XXB may or may not produce an RF output. Use caution and always determine the output power level when operating the 680XXB in this condition.
Error 138 SDM Unit or Driver Failed	Indicates a failure of the switched doubler module (SDM) or SDM bias regulator circuitry on the A14 PCB. The 680XXB is still operable but it will not produce an RF output in the 20 - 40 GHz frequency range.
Error 139 32 – 40 GHz SDM Section Failed	Indicates a failure in the 32 - 40 GHz switched doubler filter path within the SDM. The 680XXB is still operable but it will not produce an RF output in the 32 - 40 GHz frequency range.

 Table 6-1.
 Self-Test Error Messages (4 of 4)

Error Message	Description/Remarks		
Error 140 25 – 32 GHz SDM Section Failed	Indicates a failure in the 25 - 32 GHz switched doubler filter path within the SDM. The 680XXB is still operable but it will not produce an RF output in the 25 - 32 GHz frequency range.		
Error 141 20 – 25 GHz SDM Section Failed	Indicates a failure in the 20 - 25 GHz switched doubler filter path within the SDM. The 680XXB is still operable but it will not produce an RF output in the 20 - 25 GHz frequency range.		
Error 143 Slope DAC Failed	Indicates a failure of the level slope DAC on the A10 PCB. The 680XXB still operates normally but RF output level flatness may be affected during frequency sweeps.		
Error 144 RF was Off when Selftest started. Some tests were not performed.	Indicates that some self-tests were not performed because RF Output was selected OFF on the 680XXB front panel. Press the OUTPUT key to turn RF Output ON and run the instrument self-test again.		

Normal	When an abnormal condition is detected during op-		
Operation	eration, the 680XXB displays an error message to		
Error and	indicate that the output is abnormal or that a signal		
<i>Warning/</i>	input or data entry is invalid. It also displays warn-		
Status	ing messages to alert the operator to conditions that		
Messages	could cause an inaccurate signal generator output. Status messages to remind the operator of current menu selections or settings are also generated.		
	Table 6-2 is a summary list of possible error mes-		

Table 6-2 is a summary list of possible error messages that can be displayed during normal operations. Table 6-3 is a summary list of possible warning/status messages.

Error Message	Description				
ERROR	Displayed (on the frequency mode title bar) when (1) the output frequency is not phase-locked or (2) an invalid frequency parameter entry causes a frequency range error.				
LOCK ERROR	Displayed (in the frequency parameters area) when the output frequency is not phase-locked. The frequency ac- curacy and stability of the RF output is greatly reduced. Normally caused by an internal component failure. Run self-test to verify malfunction.				
RANGE	Displayed (in the frequency parameters area) when (1) the F value entered results in a sweep outside the range of the instrument, (2) the step size value entered is greater than the sweep range, or (3) the number of steps entered results in a step size of less than 1 kHz (0.1 Hz with Option 11) or 0.1 dB. Entering valid values usually clears the error.				
SLAVE	Displayed (in the frequency parameters area of the Mas- ter 68XXXB) during master-slave operation in VNA mode when the slave frequency offset value entered results in a CW frequency or frequency sweep outside the range of the slave 680XXB. Entering a valid offset value clears the error.				

 Table 6-2.
 Possible Error Messages during Normal Operations

Warning/Status Message	Description			
OVN COLD	This warning message indicates that the 100 MHz Crystal oven (or the 10 MHz Crystal oven if Option 16 is installed) has not reached operating temperature. Nor- mally displayed during a cold start of the 680XXB. If the message is displayed during normal operation, it could indicate a malfunction. Run self-test to verify.			
UNLEVELED	Displayed when the RF output goes unleveled. Nor- mally caused by exceeding the specified leveled-power rating. Reducing the power level usually clears the warning message.			
EXT REF	This status message indicates that an external 10 MHz signal is being used as the reference signal for the 680XXB.			
OFFSET	This status message indicates that a constant (offset) has been applied to the displayed power level.			
SLOPE	This status message indicates that a power slope cor- rection has been applied to the ALC.			
USER 15	This status message indicates that a user level flatness correction power-offset table has been applied to the ALC.			

6-3 TROUBLESHOOTING

Table 6-4 provides procedures for troubleshooting common malfunctions encountered during operation of the CW generator. Included are procedures for troubleshooting faults that do not produce error messages, such as, failure to power up and unexpected shutdown.

Table 6-4. Troubleshooting (1 of 3)

CW Generator will not turn on (OPERATE light is OFF)

Normal Operation: When the 680XXB is connected to the power source, the OPERATE light should illuminate and the instrument should power up.

- *Step 1* Disconnect the 680XXB from the power source, then check the line fuse on the rear panel.
 - □ If the fuse is defective, replace (see page 6-14).
 - □ If the fuse is good, go to the next step.
- *Step 2* Check to see if power is available at the power receptacle.
 - □ If not, move to a working receptacle.
 - □ If power is available, go to the next step.
- *Step 3* Check the power cable.
 - □ If defective, replace.
 - □ If good, call a service technician.

CW Generator will not turn on (OPERATE light is ON)

Normal Operation: When the 680XXB is connected to the power source, the OPERATE light should illuminate and the instrument should power up.

□ If the OPERATE light illuminates but the unit fails to power up, the 680XXB has an internal component failure. Call a service technician.

Table 6-4.Troubleshooting (2 of 3)

CW Generator Quits During Operation (OPERATE light remains on)

Trouble Description: The CW generator operates for some time, then shuts down (OPERATE light remains on). After a short period, the CW generator resumes normal operation. This is an indication that the 680XXB has reached an excessive operating temperature.

- *Step 1* Check that the fan is still operating during the time that the instrument is shut down.
 - □ If the fan is still operating, clean the air filter (see page 6-13).
 - **I** If the fan is not operating, call a service technician.

LOCK ERROR is Displayed

Trouble Description: This message is displayed in the frequency parameters area to indicate that the output frequency is not phase-locked. It is normally caused by an internal component failure.

- *Step 1* Perform a self-test of the CW generator by pressing the System Menu soft-key Selftest.
 - □ If self-test does not result in an error message(s), resume normal operation.
 - □ If an error message(s) is displayed, call a service technician.

Table 6-4.Troubleshooting (3 of 3)

UNLEVELED is Displayed

Trouble Description: This message is displayed to indicate that the RF output is unleveled.

- **Step 1** Check that the output power does not exceed the specified leveled-power rating and that the RF OUTPUT connector is terminated into a 50Ω load.
 - \square Reduce the power level to not exceed the specified leveled-power rating or terminate the RF OUTPUT connector with a 50 Ω load.
 - □ If error message remains displayed, call a service technician.

RANGE is Displayed

Trouble Description: This message is displayed in the frequency parameters area to indicate that (1) the ΔF value entered results in a sweep outside the range of the instrument, (2) the step size value entered is greater than the sweep range, or (3) the number of steps entered results in a step size of less than 1 kHz (0.1 Hz with Option 11) or 0.1 dB.

- Step 1Check that (1) the ΔF value entered does not try to set the
frequency sweep outside the range of the 680XXB, (2) the
step size entered is not greater than F2 minus F1, or (3) the
number of steps entered does not result in a step size that is
smaller than the resolution of the instrument.
 - $\hfill\square$ Enter a valid ΔF value, step size, or number of steps.
 - □ If the error message remains displayed, call a service technician.

1

6-4	ROUTINE MAINTENANCE	Routine maintenance that can be performed by the operator consists of cleaning the fan filter, cleaning the data display, and replacing a de- fective line fuse.

Fan Filter

Cleaning the The CW generator must always receive adequate ventilation. A blocked fan filter can cause the instrument to overheat and shut down. Clean the fan honeycomb filter more frequently in dusty environments. Check and clean the rear panel fan honeycomb filter periodically as follows:

- Step 1 Remove the filter guard from the rear panel by pulling out on the four panel fasteners holding it in place (Figure 6-1).
- Step 2 Vacuum the honeycomb filter to clean it.
- Step 3 Install the filter guard back on the rear panel.
- Step 4 Press in on the panel fasteners to secure the filter guard to the rear panel.

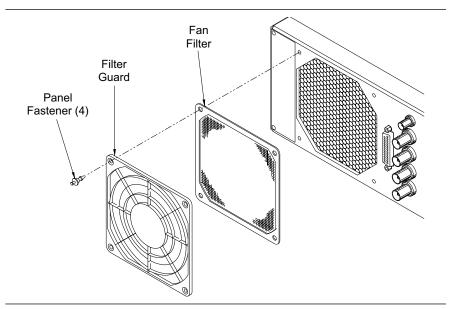


Figure 6-1. Removing/Replacing the Filter Guard

Cleaning the
Data DisplayThe data display of the CW generator is protected
by a plastic display filter. To clean the display filter,
use mild soap or detergent and water, or a commer-
cial window cleaner. When cleaning use a soft, lint-
free cloth. Do *not* use abrasive cleaners, tissues, or
paper towels which can scratch the plastic surface.**Replacing**
the Line FuseThe value of the line fuse used in the 680XXB is de-
termined by the line voltage selection—a 5A line
fuse for 110 Vac line voltage; a 2.5A line fuse for
220 Vac line voltage. These line fuse values are
printed on the rear panel next to the fuse holder.

WARNING

Before changing the fuse, *always* remove the power cord from the power outlet. There is the risk of receiving a fatal electric shock if the fuse is replaced with the power cord connected.

Always use a new fuse of the type and rating specified by the fuse markings on the rear panel of the instrument.

source.

Step 1	Disconnect the 680XXB from the power source.
<i>Step 2</i>	Using a small flat-blade screwdriver, turn the fuse cap counter-clockwise and re- move the fuse holder.
Step 3	Replace the fuse in the fuse holder.
Step 4	Install the fuse holder in the rear panel. Using the screwdriver, rotate the fuse cap clockwise to secure the fuse holder in place.
Step 5	Reconnect the CW generator to the power

OPERATOR MAINTENANCE

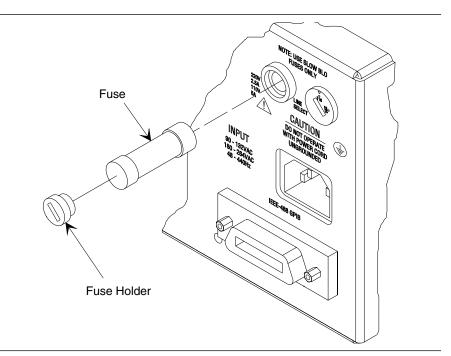


Figure 6-2. Replacing the Line Fuse

Chapter 7 Use With Other Instruments

Table of Contents

INTRODUCTION
MASTER-SLAVE OPERATION
Connecting the 68XXXBs
Initiating Master-Slave Operation 7-5
Master-Slave Operation
Master-Slave Operation in VNA Mode 7-7
Terminating Master-Slave Operation
USE WITH A 562 SNA
Connecting the 680XXB to the 562 7-10
USE WITH A 360B VNA
Connecting the 680XXB to the 360B 7-11
Configuring the 680XXB
Initiating 360B Tracking Mode
Terminating 360B Tracking Mode 7-13

Chapter 7 Use With Other Instruments

7-1 INTRODUCTION

This chapter provides information and instructions for using the Series 680XXB Synthesized CW Generator with other ANRITSU instuments. It contains the following:

- □ Instructions for interconnecting and operating any two 68XXXBs in a master-slave configuration.
- □ Instructions for connecting the 680XXB to a ANRITSU Model 562 Scalar Network Analyzer so that it can be used as a signal source for the analyzer.
- □ Instructions for connecting the 680XXB to a ANRITSU Model 360B Vector Network Analyzer so that it can be used as a signal source for the analyzer operating in the tracking receiver mode.

7-2 MASTER-SLAVE OPERATION

Master-slave operation consists of connecting any two 68XXXBs together and configuring them so that they produce CW and synchronized, swept output signals at an operator-selectable frequency offset. One 68XXXB (the Master) controls the other (the Slave) via interface cables between their rear panel AUX I/O and SERIAL I/O connectors. The two units are phase-locked together by connecting them to the same 10 MHz reference time base.

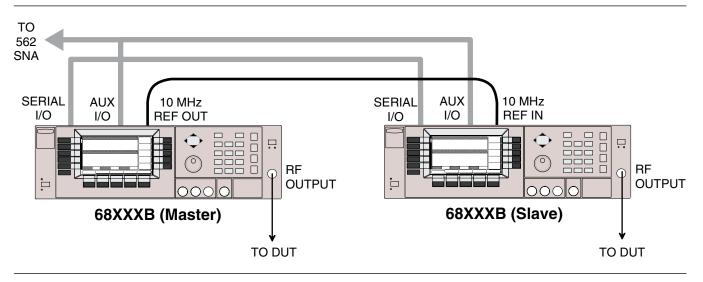


Figure 7-1. 68XXXB Configuration for Master-Slave Operation

·	Connecting the 68XXXBs	Connect the two 68XXXBs, shown in Figure 7-1, as follows:	
NOTE When connecting two 68XXXBs to- gether for Master-Slave operations, <i>always</i> use a ANRITSU Master- Slave interface cable set, Part No. ND36329.		Step 1	Connect the 3-port AUX I/O cable end la- beled "MASTER" to the rear panel AUX I/O connector on the Master 68XXXB. Connect the AUX I/O cable labeled "SLAVE" to the rear panel AUX I/O con- nector on the Slave 68XXXB.
NOTE If a Model 562 Scalar Network Ana- lyzer is being used with the		Step 2	Connect the ends of the flat interface ca- ble to the rear panel Serial I/O connectors on the Master and Slave 68XXXBs.
master-slave configuration, (1) con- nect the AUX I/O cable end labeled "SNA" to the rear panel AUX I/O connector on the 562 SNA and (2) connect a dedicated system bus ca- ble (P/N 2100-1) between the Mas- ter 68XXXB rear panel IEEE-488 GPIB connector and the 562 SNA rear panel DEDICATED GPIB con-		Step 3	Connect one end of a coaxial cable to the rear panel 10 MHz REF OUT connector on the Master 68XXXB. Connect the other end to the rear panel 10 MHz REF IN con- nector on the Slave 68XXXB.

Initiating

Operation

Master-Slave

Step 4 Connect the Master 68XXXB RF OUTPUT and the Slave 68XXXB RF OUTPUT to the appropriate connections on the DUT.

The following paragraphs describe how to set up both 68XXXBs to perform master-slave operations. Use the CW Frequency Mode menu map (Chapter 4, Figure 4-2) to follow the menu sequences.

To initiate master-slave operation, turn on both 68XXXBs and place them in CW mode. The CW Menu (below) is displayed.

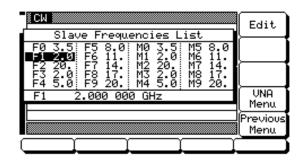
EU (1997) F1	2.000 000 000 0 GHz	Edit F1
∦Level L1	+0.00 dBm	Master Slave
	+0.00 dbiii	Edit L1
		CW Ramp Menu
(CW	(Step [Manual]	

On the Master 68XXXB , press Master Slave to go to the Master-Slave Menu display (below).

ECW 51	2.000 000 000 0 GHz	Slave Fregs
Level	+0.00 dBm	Slave L1
	+0.00 dbiii	Slave L2
		Enable
(CW	(Step [Manual]	Υ

This menu lets you perform the following:

- □ Go to the Slave Frequencies List menu.
- □ Set the dF frequency for the Slave unit.
- □ Set the Slave unit's main power level (L1).
- □ Set the alternate sweep power level (L2) for the Slave unit.
- **u** Turn master-slave operation on and off.


Press Slave Freqs to go to the Slave Frequencies List menu (next page).

NOTE

Master-slave operations are always initiated in the CW frequency mode. Once initiated, you then can change to a sweep frequency mode of operation by selecting the desired frequency mode on the Master 68XXXB.

NOTE

Upon reset, the slave frequencies (F0 - F9 and M0 - M9) return to the default values shown here.

This menu lets you edit the listed frequencies for the Slave 68XXXB.

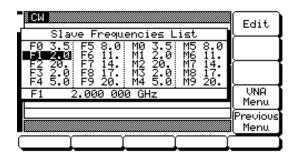
Use the cursor control key to select a frequency parameter from the list, then press Edit to edit its value. Edit the current frequency parameter value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. Press Edit again to close the open frequency parameter.

When you are finished editing the slave frequencies, press **Previous Menu** to return to the Master-Slave menu (below).

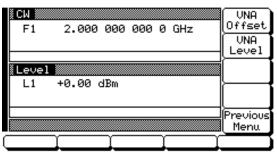
EU	2.000 0	00 000 0) GHz	Slave Fregs
				Slave DF
Level	+0.00 dE) es		Slave L1
	70.00 GF)m		Slave L2
				Enable
(CW	(Step)	[Manual]	\square	

The Master-Slave menu lets you set the dF frequency and L1 and L2 power level parameters for the Slave unit.

Press Slave DF to open the dF frequency parameter.


Press Slave L1 to open the main power level parameter.

Press Slave L2 to open the alternate sweep power level parameter.


Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key

		pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.Press Enable to begin master-slave operation.Press CW to return to the CW menu.
	Master-Slave Operation	During master-slave operation, the Slave unit is in remote mode under the direct control of the Master 68XXXB. The Slave unit displays the following:
		 Its output CW frequency or sweep frequency range. Its output power level. The messages Remote and Local Lockout.
NOTE The 562 SNA, when being used with the master-slave configura- tion, will not display markers.		The CW/sweep frequency settings on the Master 68XXXB define the master sweep, and the corre- sponding frequency settings on the Slave unit define the slave sweep. For example, if slave frequency F1 is set to 4 GHz and slave frequency F2 is set to 12 GHz, then the Slave unit will sweep from 4 to 12 GHz whenever the F1-F2 sweep range is se- lected on the Master 68XXXB. The Master 68XXXB will sweep from F1-F2 with the values of F1 and F2 defined in the Master units's frequency list.
	<i>Master-Slave Operation in VNA Mode</i>	In the VNA mode of master-slave operation, a Slave unit is coupled to a Master 68XXXB that is con- nected to a Model 360B Vector Network Analyzer in a source or dual source configuration. (Operating in- structions for the vector network analyzer can be found in the Model 360B VNA Operation Manual, P/N 10410-00110.) The following paragraphs de- scribe how to set up both 68XXXBs to perform master-slave operations in the VNA mode.
		Place both 68XXXBs in CW mode. Then, on the Master unit, press Master Slave to go to the Master-Slave Menu display (page 7-5).
		At the Master-Slave menu, press Slave Freqs to go to the Slave Frequencies List Menu display (next page).

NOTE

Press VNA Menu to go to the VNA Menu display (below).

This menu lets you set the frequency offset and output power level for the Slave 68XXXB in the VNA mode.

Press VNA Offset to open the slave frequency offset parameter.

Press VNA Level to open the slave output power level parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Previous Menu to return to the Slave Frequencies List menu.

Return to the Master-Slave menu and press Enable to begin master-slave operation.

SLAVE

During master-slave operations in VNA mode, this error message is displayed on the Master 68XXXB when the slave offset value entered results in a CW frequency or frequency sweep outside the range of the Slave unit. Entering a valid offset value clears the error.

Terminating
Master-SlaveThe following describes how to terminate master-
slave operation and return the Slave 68XXXB to lo-
cal (front panel) control.

On the Master 68XXXB, select CW mode.

At the CW Menu, press Master Slave to go to the Master Slave Menu display.

At the Master Slave Menu display, press Enable . This terminates master-slave operation and returns the Slave 68XXXB to local (front panel) control.

7-3 **USE WITH A 562 SCALAR** NETWORK ANALYZER

The 680XXB is directly compatible with the ANRITSU Model 562 Scalar Network Analyzer (SNA). The following paragraphs provide instructions for connecting the CW generator to the 562 SNA so that is can be used as a signal source for the analyzer. Operating instructions for the network analyzer can be found in the Model 562 Scalar Network Analyzer Operation Manual, P/N 10410-00046.

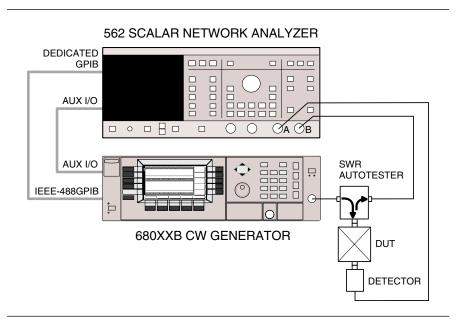


Figure 7-2. 680XXB CW Generator to 562 SNA Connections

	<i>Connecting the 680XXB to the 562</i>		the 680XXB CW generator to the 562 scalar analyzer as shown in Figure 7-2. Connect one end of the Auxiliary I/O ca-
NOTES The 680XXB's GPIB address should be set to 5 (the default ad- dress setting) for operation with a		-	ble (P/N 806-7) to the 562 rear panel AUX I/O connector. Connect the other end of the cable to the 680XXB rear panel AUX I/O connector.
562 SNA. To verify or change the GPIB address setting refer to Configuring the GPIB on page 3-62.		<i>Step 2</i>	Connect one end of the dedicated system bus cable (P/N 2100-1) to the 562 rear panel DEDICATED GPIB connector. Con-
The 562 SNA will only accept and display the nine video markers, F1 thur F9, from the 680XXB.			nect the other end of the cable to the 680XXB rear panel IEEE-488 GPIB connector.
When performing amplifier testing <i>only</i> use the 680XXB power level, L1.		Step 3	Turn on the 680XXB and the 562. The system is now ready to operate.

USE WITH A 360B VECTOR NETWORK ANALYZER

7-4 USE WITH A 360B VECTOR NETWORK ANALYZER

The 680XXB CW generator is compatible with the ANRITSU Model 360B Vector Network Analyzer (VNA). The following paragraphs provide instructions for connecting the 680XXB to the 360B VNA so that it can be used as a signal source for the analyzer operating in the tracking receiver mode. Operating instructions for the vector network analyzer can be found in the Model 360B Vector Network Analyzer Operation Manual, P/N 10410-00110.

When operating in tracking receiver mode, the 360B steers its second local oscillator frequency and phase signal so as to phase-lock itself to the reference signal from the 680XXB. Due to the inherent resolution of the 360B's frequency readout, frequency resolution is limited to 1 kHz intervals.

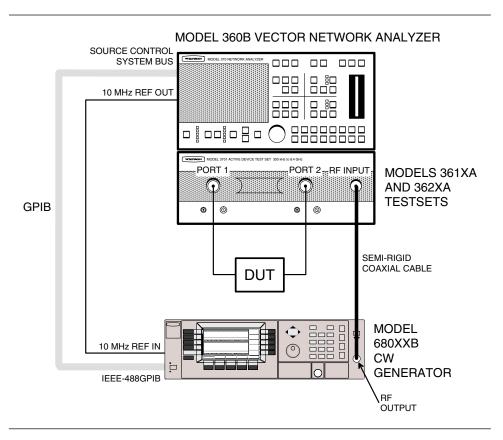


Figure 7-3. 680XXB CW Generator to 360B VNA Connections

Connecting
the 680XXBConnect the 680XXB CW generator to the 360B vec-
tor network analyzer as shown in Figure 7-3.to the 360B

Step 1 Connect one end of a GPIB cable, 1 meter in length, to the 680XXB rear panel IEEE--488 GPIB connector. Connect the other

USE WITH A 360B VECTOR NETWORK ANALYZER

end of the cable to the 360B rear panel SOURCE CONTROL SYSTEM BUS connector.

Step 2 Connect one end of a coaxial cable to the 680XXB rear panel 10 MHz REF IN connector. Connect the other end to the 360B rear panel 10 MHz REF OUT connector.

If the 680XXB contains an Option 16 high-stability time base, connect the coaxial cable between the 680XXB rear panel 10 MHz REF OUT connector and the 360B rear panel 10 MHz REF IN connector.

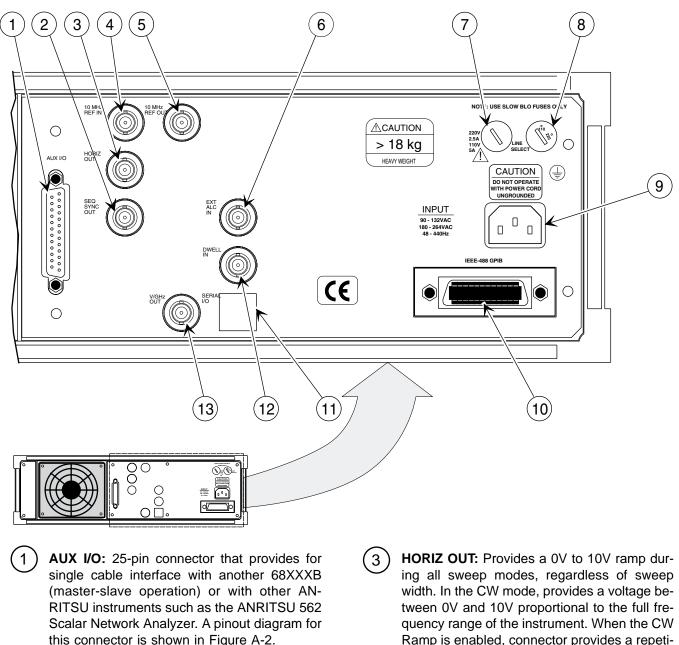
Step 3 Turn on the 680XXB and configure it as described in the following paragraphs.

Configuring the 680XXB In order for the 680XXB to operate with a 360B in tracking receiver mode, its GPIB address and data terminator must match the System Bus source address and data terminator that are set on the 360B VNA. Verify the GPIB address and data terminator as follows:

Step 1 On the 680XXB, press **SYSTEM**. At the System Menu display, press Config. At the System Configuration Menu display, press GPIB. The Configure GPIB Menu (shown below) is displayed.

ICW ∭ F1		Config GPI	R I	GPIB Address
	GPIB GPIB	Address Terminator	5	Line Term
∦Leve				
				More
				Previous Menu
		Ĩ		η

Step 2 To change the address of the 680XXB on the System Bus, press GPIB Address . Enter the new address using the cursor control key or the data entry keypad and the terminator key


USE WITH A 360B VECTOR NETWORK ANALYZER

		The new GPIB address will appear on the display.
	Step 3	Press Line Term to select the correct GPIB data delimiter.
		The CW generator is now configured for 360B tracking receiver mode operation.
Initiating 360B Track- ing Mode	Turn on the 360B VNA and configure it for tracking receiver mode operation. (Refer to the 360B VNA op- eration manual.) Once configured, the 360B should take control of the CW generator.	
	rameters sages See	e 360B takes control, the display of all pa- on the 680XXB is disabled and the mes- cure Mode Active and Remote appear on the nel display.
<i>Terminating 360B Track- ing Mode</i>	To terminate 360B VNA tracking receiver mode op- eration, you must first return the 680XXB to local control and then turn off the Secure mode.	
	Step 1	Turn off the 360B VNA. This returns the 680XXB to local control.
	Step 2	On the 680XXB, press SYSTEM , then Reset . This turns off the Secure mode.

Appendix A Rear Panel Connectors

A-1	INTRODUCTION	This appendix provides descriptions for the rear panel connectors on a typical Series 680XXB Synthesized CW Generator.
A-2	REAR PANEL CONNECTORS	Figure A-1 provides a illustration of the rear panel and describes the rear panel connectors.
A-3	CONNECTOR PINOUT DIAGRAMS	Figures A-2 and A-3 provide pinout diagrams and descriptions for the AUX I/O and IEEE-488 GPIB multipin connectors on the rear panel.

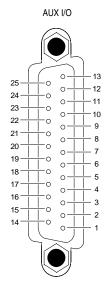
REAR PANEL CONNECTORS

2 **SEQ SYNC OUT:** Provides a +5V signal during sweep retrace, at bandswitching points, and during each frequency step in step sweep mode. Also, when video markers are selected, provides -5V marker pulses and a -10V selected marker pulse during forward sweep. BNC connector. tween 0V and 10V proportional to the full frequency range of the instrument. When the CW Ramp is enabled, connector provides a repetitive 0V to 10V ramp. BNC connector, 50Ω impedance. **10 MHz REF IN:** Accepts an external 10 MHz ±100 Hz, 0 to 10 dBm time-base signal. Auto-

 ± 100 Hz, 0 to 10 dBm time-base signal. Automatically disconnects the internal highstability, time-base option, if installed. BNC connector, 50Ω impedance.

Figure A-1. Rear Panel, Series 680XXB Synthesized CW Generator (1 of 2)

REAR PANEL CONNECTORS


5 10 MHz REF OUT: Provides a 0.5 Vp-p, AC coupled, 10 MHz signal derived from the internal frequency standard of the CW generator. BNC connector, 50Ω impedance.

- 6 **EXT ALC IN:** Provides for leveling the RF output signal externally with either a remote detector or a power meter. Connector accepts a positive or negative 0.5mV to 500 mV signal from a remote detector or a ±1V signal from a remote power meter. BNC connector.
- Line Fuse: Provides over-voltage/current protection for CW generator circuits during operation and standby. Unit requires a 5A, slow blow fuse for 110 Vac line voltage or a 2.5A, slow blow fuse for 220 Vac line voltage.
- 8 LINE SELECT Switch: Provides selection of 110 or 220 Vac line voltages. When 110 Vac is selected, the 680XXB accepts 90-132 Vac, 48--440 Hz line voltage; when 220 Vac is selected, the 680XXB accepts 180-264 Vac, 48-440 Hz line voltage.
- 9 **Input Line Voltage Receptacle:** Provides for connecting line voltage to the 680XXB.
- **IEEE-488 GPIB:** 24-pin connector that provides for remotely controlling the CW generator from an external controller via the IEEE-488 bus (GPIB). A pinout diagram for this connector is shown in Figure A-3.

- 11) **SERIAL I/O:** Provides access to two RS-232 terminal ports to support service and calibration functions and master-slave operations. RJ45 connector.
- 12) **DWELL IN:** Accepts an external TTL low-level signal to pause the sweep. The sweep resumes when the signal is removed.
- V/GHz OUT: Provides a reference voltage relative to the frequency of the RF output (see table below). BNC connector.

Model Number	V/GHz Output
68037B, 68045B,68047B	1.0V/GHz
68053B,68055B,68059B	0.5V/GHz
68063B, 68065B, 68069B	0.5V/GHz
68075B, 68077B	0.25V/GHz
68085B, 68087B	0.25V/GHz
68095B, 68097B	0.25V/GHz

Figure A-1. Rear Panel, Series 680XXB Synthesized CW Generator (2 of 2)

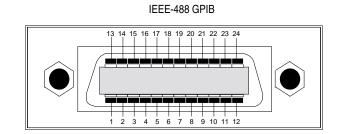

PIN	SIGNAL NAME	SIGNAL DESCRIPTION
1	HORIZ OUTPUT GND	<i>Horizontal Sweep Output:</i> Provides a 0V at beginning and +10V at end of sweep for all sweep modes, regardless of sweep width. In the CW mode, the voltage is proportional to frequency between 0V at low end and +10V at the high end of range. In CW mode, if CW Ramp is enabled, a repetitive, 0V to +10V ramp is provided. The ramp speed is adjusted by the Sweep Time function. Chassis Ground
3	SEQ SYNC	Sequential Sync Output: Provides a +5V signal during sweep retrace, at band- switching points, and during each frequency step in step sweep mode, –5V during markers, and –10V during the selected marker.
4	L ALT ENABLE	<i>L-Alternate Enable Output:</i> Provides a TTL low-level signal which indicates that the alternate sweep mode is active.
5	MARKER OUTPUT	<i>Marker Output:</i> Provides a +5V or –5V signal during a marker. Signal polarity selected from a front panel menu.
6	RETRACE BLANKING	<i>Retrace Blanking Output:</i> Provides a +5V or –5V signal coincident with sweep re- trace. Signal polarity selected from a front panel menu.
7	L ALT SWP	<i>L-Alternate Sweep Output:</i> Provides a TTL low-level signal to indicate that the pri- mary sweep is in progress or a TTL high-level signal to indicate that the alternate sweep is in progress.
8	Shield	Cable Shield/Chassis Ground
9	TRIGGER OUTPUT	<i>Trigger Output:</i> Provides a TTL low-level trigger signal for external devices or instruments.
10	SWP DWELL OUT	<i>Sweep Dwell Output:</i> Provides an open-collector output which goes to ground when the sweep is dwelled at the start, stop, and bandswitching frequencies, and at the markers.
11	LOCK STATUS	Lock Status Output: Provides a TTL high-level signal when the frequency is phase-locked.
12	RXb	RXb: Serial Data Input to the processor (/t1).
13	EXT TRIGGER	External Trigger: Accepts a TTL low-level signal of 1 μ s width to trigger a sweep.

Figure A-2. Pinout Diagram, AUX I/O Connector (1 of 2)

REAR PANEL CONNECTORS

PIN	SIGNAL NAME	SIGNAL DESCRIPTION
14	V/GHz	V/GHz Output: Provides a reference voltage relative to the RF output frequency (1.0 V/GHz for Models 68037B, 68045B, and 68047B; 0.5 V/GHz for Models 68053B, 68055B, 68059B, 68063B, 68065B, and 68069B; 0.25 V/GHz for Models 68075B, 68077B, 68085B, 68087B, 68095B, and 68097B).
15	EOS INPUT	<i>End-of-Sweep Input:</i> Accepts a TTL high-level signal to tell the CW generator to begin the end of sweep dwell.
16	EOS OUTPUT	<i>End-of-Sweep Output:</i> Provides a TTL high-level signal when the CW generator has begun the end of sweep dwell.
17	AUX 1	Aux 1: Auxiliary input/output to the processor (PB6).
18	SWP DWELL IN	<i>Sweep Dwell Input:</i> Permits a TTL low-level signal to pause the sweep. The sweep resumes when the signal is removed.
19	AUX 2	Aux 2: Auxiliary input/output to the processor (PC3).
20	BANDSWITCH BLANK	<i>Bandswitch Blanking Output:</i> Provides a +5V or –5V signal coincident with band- switching points. Signal polarity is selected from a front panel menu.
21	SPARE	
22	HORIZ IN	<i>Horizontal Sweep Input:</i> Accepts a 0V to 10V external sweep ramp from a Master 680XXB. This input is automatically selected when the CW generator is in the Slave Mode.
23	Return	Horizontal Sweep Input return.
24	TXb	TXb: Serial Data Output from the processor.
25	MEMORY SEQ	<i>Memory Sequencing Input:</i> Accepts a TTL low-level signal to sequence through ten stored, front panel setups.

Figure A-2. Pinout Diagram, AUX I/O Connector (2 of 2)

PIN	SIGNAL NAME	SIGNAL DESCRIPTION
1-4	DIO 1 thru DIO 4	<i>Data Input/Output:</i> Bits are HIGH when the data is logical 0 and LOW when the data is logical 1.
5	EOI	<i>End or Identify:</i> A low-true state indicates that the last byte of a multibyte message has been placed on the line.
6	DAV	<i>Data Valid:</i> A low-true state indicates that the active talker has (1) sensed that NRFD is high-false and NDAC is low-true, (2) placed the data byte on the bus, and (3) waited an appropriate length of time for the data to settle.
7	NRFD	Not Ready For Data: A high-false state indicates that all active listeners are ready to accept new data.
8	NDAC	<i>Not Data Accepted:</i> A low-true state indicates that all addressed listeners have accepted the current data byte for internal processing.
9	IFC	<i>Interface Clear:</i> A low-true state places all bus instruments in a known, quiescent state—unaddressed to talk, unaddressed to listen, and service request idle.
10	SRQ	<i>Service Request:</i> A low-true state indicates that a bus instrument desires the immediate attention of the controller.
11	ATN	<i>Attention:</i> A low-true state indicates that the bus is in the command mode (data lines are carrying bus commands). A high-false state indicates that the bus is in the data mode (data lines are carrying device-dependent instructions or data).
12	Shield	Chassis Ground
13-16	DIO5 thru DIO6	<i>Data Input/Output:</i> Bits are HIGH when the data is logical 0 and LOW when the data is logical 1.
17	REN	<i>Remote Enable:</i> A low-true state enables bus instruments to be operated remotely, when addressed.
18-24	GND	Logic Ground

Appendix B Performance Specifications

FREQUENCY MODEL SUMMARY

Model	Frequency Range
68037B	2.0 to 20.0 GHz
68045B	0.5 to 20.0 GHz
68047B	0.01 to 20.0 GHz
68053B	2.0 to 26.5 GHz
68055B	0.5 to 26.5 GHz
68059B	0.01 to 26.5 GHz
68063B	2.0 to 40.0 GHz
68065B	0.5 to 40.0 GHz
68069B	0.01 to 40.0 GHz
68075B	0.5 to 50.0 GHz
68077B	0.01 to 50.0 GHz
68085B	0.5 to 60.0 GHz
68087B	0.01 to 60.0 GHz
68095B	0.5 to 65.0 GHz (with usable output to 67.0 GHz)
68097B	0.01 to 65.0 GHz (with usable output to 67.0 GHz)

CW MODE

Output: Twenty independent, presettable CW frequencies (F0 - F9 and M0 - M9).

Accuracy: Same as internal or external 10 MHz time base. Internal Time Base Stability:

With Aging: $<2 \times 10^{-8}$ /day

 $(<5 \times 10^{-10}/\text{day with Option 16})$

With Temperature: $<2 \times 10^{-8}/°C$ over 0°C to 55°C ($<2 \times 10^{-10}/°C$ with Option 16)

Resolution:

1 kHz (0.1 Hz with Option 11)

External 10 MHz Reference Input: Accepts external 10 MHz \pm 100 Hz, 0 to +10 dBm time base signal. Automatically disconnects the internal high-stability time-base option, if installed. BNC, rear panel, 50 Ω impedance.

10 MHz Reference Output: 0.5 Vp-p into 50Ω ,AC coupled. Rear panel BNC; 50Ω impedance. **Switching Time (typical maximum):** <40 ms to be within 1 kHz of final frequency.

PHASE-LOCKED STEP SWEEP MODE

Sweep Width: Independently selected, 1 kHz (0.1 Hz with Option 11) to full range. Every frequency step in sweep range is phase-locked.

Accuracy: Same as internal or external 10 MHz time base.

Resolution (Minimum Step Size):

1 kHz (0.1 Hz with Option 11)

Steps: User-selectable number of steps or the step size.
Number of Steps: Variable from 1 to 10,000
Step Size: 1 kHz (0.1 Hz with Option 11) to the full frequency range of the instrument. (If the step size does not divide into the selected frequency range, the last step is truncated.)

Dwell Time Per Step: Variable from 1 ms to 99 seconds **Switching Time (typical maximum):** <15 ms + 1 ms/GHz step size or <40 ms, whichever is less.

ALTERNATE SWEEP MODE

Sweeps alternately in step sweep between any two sweep ranges. Each sweep range may be associated with a power level.

MANUAL SWEEP MODE

Provides stepped, phase-locked adjustment of frequency between sweep limits. User-selectable number of steps or step size.

PROGRAMMABLE FREQUENCY AGILITY

Under GPIB control, up to 1000 non-sequential frequencies can be stored and then addressed as a phase-locked step sweep. Data stored in volatile memory.

MARKERS

Up to 20 independent, settable markers (F0 – F9 and M0 - M9).

Video Markers: +5V or –5V marker output, selectable from system menus. AUX I/O connector, rear panel. Marker Accuracy: Same as sweep frequency accuracy. Marker Resolution:

1 kHz (0.1 Hz with Option 11)

SWEEP TRIGGERING

Sweep triggering is provided for Step Frequency Sweep and CW Power Sweep.

Auto: Triggers sweep automatically.

External: Triggers a sweep on the low to high transition of an external TTL signal. AUX I/O connector, rear panel. **Single:** Triggers, aborts, and resets a single sweep. Reset sweep may be selected to be at the top or bottom of the sweep.

SPECTRAL PURITY

All specifications apply at the lesser of +10 dBm output or maximum specified leveled output power, unless otherwise noted.

SPURIOUS SIGNALS

Harmonic and Harmonic Related:

500 MHz to ≤2.2 Ghz (680X5B):	<–50 dBc	
10 MHz to ≤50 MHz:	<-30 dBc	
>50 MHz to ≤2 GHz:	<–40 dBc	
>2 GHz (2.2 Ghz for 680X5B) to ≤20 GHz:	<-60 dBc	
>20 GHz to ≤40 GHz:	<–40 dBc	
armonic and Harmonic Related (Models having a		

Harmonic and Harmonic Related (Models having a high-end frequency of >40 GHz and units with Option 15A at maximum specified leveled output power):

500 MHz to ≤2.2 Ghz (680X5B):	<–50 dBc
10 MHz to ≤50 MHz:	<-30 dBc
>50 MHz to ≤2 GHz:	<-40 dBc
>2 GHz (2.2 Ghz for 680X5B) to ≤20 GHz:	<-50 dBc
>20 GHz to ≤40 GHz:	<-40 dBc
50 Ghz units: >40 GHz to ≤50 GHz:	<-40 dBc
60 Ghz units: >40 GHz to ≤60 GHz:	<-30 dBc
65 Ghz units: >40 GHz to ≤45 GHz:	<–25 dBc
>45 GHz to ≤65 GHz:	<-30 dBc
Nonharmonics:	
500 MHz to ≤2.2 Ghz (680X5B):	<–50 dBc
10 MHz to ≤2 GHz:	<–40 dBc
>2 GHz (2.2 Ghz for 680X5B) to ≤65 GHz:	<-60 dBc

SINGLE-SIDEBAND PHASE NOISE (dBc/Hz)

Frequency	Offset From Carrier				
(GHz)	100 Hz	100 Hz 1 kHz		100 kHz	
0.6 (680X5B)	-87	-100	-98	-115	
0.6	-77	-88	-86	-100	
2.0 (680X5B)	-81	-94	-92	-109	
2.0	-80	-88	-86	-102	
6.0	-78	-88	-86	-102	
10.0	-73	-86	-83	-102	
20.0	-66	-78	-78	-100	
26.5	-63	-78	-76	-96	
40.0	-60	-75	-72	-94	
50.0	-54	-69	-66	-88	
65.0	-54	-69	-64	-88	

POWER LINE and FAN ROTATION SPURIOUS EMISSIONS (dBc)

Frequency Range	Offset From Carrier				
(GHz)	<300 Hz 300 Hz to 1 kHz		>1 kHz		
0.5 to ≤1.0 (680X5B)	<-62	<-72	<-72		
>1.0 to ≤2.2 (680X5B)	<-56	<-66	<-66		
0.01 (>2.2 for 680X5B)to ≤8.4	<-50	<-60	<-60		
>8.4 to ≤20	<-46	<-56	<-60		
>20 to ≤40	<-40	<-50	<-54		
>40 to ≤65	<-34	<44	<-48		

RESIDUAL FM (50 Hz - 15 kHz BW)

Frequency Range (GHz)	Residual FM (Hz RMS)
0.5 to ≤1.0 (680X5B)	<30
>1.0 to ≤2.2 (680X5B)	<60
0.01 (>2.2 for 680X5B) to ≤8.4	<120
>8.4 to ≤20	<220
>20 to ≤40	<440
>40 to ≤65	<880

AM Noise Floor:

Typically <-145 dBm/Hz at 0 dBm output and offsets >5 MHz from carrier.

RF OUTPUT

Power level specifications apply at $25^{\circ} \pm 10^{\circ}$ C. MAXIMUM LEVELED OUTPUT POWER

Model Number	Frequency Range (GHz)	Output Power (dBm)	Output Power with Step Attenuator (dBm)
68037B	2.0 to ≤20.0	+13.0	+11.0
68045B	0.5 to ≤20.0	+13.0	+11.0
68047B	0.01 to ≤20.0	+13.0	+11.0
68053B	2.0 to ≤20.0	+9.0	+7.0
	>20.0 to ≤26.5	+6.0	+3.5
68055B	0.5 to ≤2.2	+13.0	+11.0
	>2.2 to ≤20.0	+9.0	+7.0
	>20.0 to ≤26.5	+6.0	+3.5
68059B	0.01 to ≤2.0	+13.0	+11.0
	>2.0 to ≤20.0	+9.0	+7.0
	>20.0 to ≤26.5	+6.0	+3.5
68063B	2.0 to ≤20.0	+9.0	+7.0
	>20.0 to ≤40.0	+6.0	+3.0
68065B	0.5 to ≤2.2	+13.0	+11.0
	>2.2 to ≤20.0	+9.0	+7.0
	>20.0 to ≤40.0	+6.0	+3.0
68069B	0.01 to ≤2.0	+13.0	+11.0
	>2.0 to ≤20.0	+9.0	+7.0
	>20.0 to ≤40.0	+6.0	+3.0
68075B	0.5 to ≤2.2	+11.0	+10.0
	>2.2 to ≤20.0	+10.0	+8.5
	>20.0 to ≤40.0	+2.5	0.0
	>40.0 to ≤50.0	+2.5	-1.0
68077B	0.01 to ≤2.0	+12.0	+10.0
	>2.0 to ≤20.0	+10.0	+8.5
	>20.0 to ≤40.0	+2.5	0.0
	>40.0 to ≤50.0	+2.5	-1.0
68085B	$\begin{array}{l} 0.5 \ \text{to} \leq 2.2 \\ > 2.2 \ \text{to} \leq 20.0 \\ > 20.0 \ \text{to} \leq 40.0 \\ > 40.0 \ \text{to} \leq 50.0 \\ > 50.0 \ \text{to} \leq 60.0 \end{array}$	+11.0 +10.0 +2.5 +2.0 +2.0	+10.0 +8.5 0.0 -1.5 -2.0
68087B	$\begin{array}{l} 0.01 \ to \leq 2.0 \\ > 2.0 \ to \leq 20.0 \\ > 20.0 \ to \leq 40.0 \\ > 40.0 \ to \leq 50.0 \\ > 50.0 \ to \leq 60.0 \end{array}$	+12.0 +10.0 +2.5 +2.0 +2.0	+10.0 +8.5 0.0 -1.5 -2.0
68095B	$\begin{array}{l} 0.5 \ \text{to} \leq \!\! 2.2 \\ \!$	+11.0 +10.0 +2.5 0.0 -2.0	Not Available

MAXIMUM LEVELED OUTPUT POWER (Continued)

Model Number	Frequency Range (GHz)	Output Power (dBm)	Output Power with Step Attenuator (dBm)	
68097B	$\begin{array}{l} 0.01 \ to \leq 2.0 \\ > 2.0 \ to \leq 20.0 \\ > 20.0 \ to \leq 40.0 \\ > 40.0 \ to \leq 50.0 \\ > 50.0 \ to \leq 65.0 \end{array}$	+12.0 +10.0 +2.5 0.0 -2.0	Not Available	
Wit	h Option 15A (High Power) I	nstalled	
68037B	2.0 to 20.0	+17.0	+15.0	
68045B	0.5 to ≤2.2 >2.2 to ≤20.0	+13.0 +17.0	+11.0 +15.0	
68047B	0.01 to ≤2.0 >2.0 to ≤20.0	+13.0 +17.0	+11.0 +15.0	
68053B	2.0 to ≤20.0 >20.0 to ≤26.5	+13.0 +10.0	+11.0 +7.5	
68055B	0.5 to ≤20.0 >20.0 to ≤26.5	+13.0 +10.0	+11.0 +7.5	
68059B	0.01 to ≤20.0 >20.0 to ≤26.5	+13.0 +10.0	+11.0 +7.5	
68063B	2 to ≤20.0 >20 to ≤40.0	+13.0 +6.0	+11.0 +3.0	
68065B	0.5 to ≤20.0 >20 to ≤40.0	+13.0 +6.0	+11.0 +3.0	
68069B	0.01 to ≤20.0 >20 to ≤40.0	+13.0 +6.0	+11.0 +3.0	
68075B	0.5 to 50.0	Standard	Standard	
68077B	0.01 to 50.0	Standard	Standard	
68085B	0.5 to 60.0	Standard	Standard	
68087B	0.01 to 60.0	Standard	Standard	
68095B	0.5 to 65.0	Standard	Not Available	
68097B	0.01 to 65.0	Standard	Not Available	

LEVELED OUTPUT POWER RANGE

Without an Attenuator: Maximum leveled power to -15 dBm (-20 dBm typical). For units with Option 15A installed, minimum settable power is -5 dBm (-10 dBm typical).

With an Attenuator: Maximum leveled power to

-115 dBm (-120 dBm typical). For 68075B, 68077B, 68085B, 68087B, and units with Option 15A installed, minimum settable power is -105 dBm (-110 dBm typical)

UNLEVELED OUTPUT POWER RANGE (typical)

Without an Attenuator: >40 dB below max power. With an Attenuator: >130 dB below max power.

POWER LEVEL SWITCHING TIME (to within specified accuracy):

Without Change in Step Attenuator:<1ms typical</th>With Change in Step Attenuator:<20 ms typical</td>

ACCURACY AND FLATNESS

Attenuation	Frequency (GHz)					
Below Max Power	0.01- 0.05	0 05-20 20-40 40-50 50-60 60-65				60-65
Accuracy:						
0-25 dB [®]	±2.0 dB	±1.0 dB	±1.0 dB	±1.5 dB	±1.5 dB	±1.5 dB
25-60 dB	±2.0 dB	±1.0 dB	±1.0 dB	±1.5 dB	±3.5 dB [®]	N/A
>60 dB	±2.0 dB	±1.0 dB	±1.0 dB	±2.5 dB [®]	±3.5 dB [®]	N/A
Flatness:						
0-25 dB [®]	±2.0 dB	±0.8 dB	±0.8 dB	±1.1 dB	±1.1 dB	±1.1 dB
25-60 dB	±2.0 dB	±0.8 dB	±0.8 dB	±1.1 dB	±3.1 dB [®]	N/A
>60 dB	±2.0 dB	±0.8 dB	±0.8 dB	±2.1 dB [®]	±3.1 dB [®]	N/A

Typical

 $^{\textcircled{0}}$ 0 to 25 dB or to minimum rated power, whichever is higher

OTHER OUTPUT POWER SPECIFICATIONS

Output Power Resolution: 0.01 dB Source Impedance: 50Ω nomimal Source SWR (Internal Leveling):

Without Attenuator: <1.7 at <2 GHz typical

<1.6 at 2 to 20 GHz typical <2.0 at >20 GHz typical

With Attenuator: <2.0 typical

Power Level Stability with Temperature:

0.04 dB/°C typical

Level Offset: Offsets the displayed power level to establish a new reference level.

OUTPUT ON/OFF: Toggles the RF output between an Off and On state. During the Off state, the RF oscillator is turned off. The On or Off state is indicated by two LEDs located below the OUTPUT ON/OFF key on the front panel. **RF On/Off Between Frequency Steps:** System menu selection of RF On or RF Off during frequency switching in CW or Step Sweep modes.

RF On/Off During Retrace: System menu selection of RF On or RF Off during retrace.

Internal Leveling: Power is leveled at the output connector in all modes.

External Leveling:

External Detector: Levels output power at a remote detector location. Accepts a positive or negative 0.5 mV to 500 mV input signal from the remote detector. EXT ALC ADJ adjusts the input signal range to an optimum value. BNC connector, front and rear panel.

External Power Meter: Levels output power at a remote power meter location. Accepts a $\pm 1V$ full scale input signal from the remote power meter. EXT ALC ADJ adjusts the input signal range to an optimum value. BNC connector, front and rear panel.

External Leveling Bandwidth:

30 kHz typical in Detector mode.

0.7 Hz typical in Power Meter mode.

User Level Flatness Correction:

Number of points: 2 to 801 points per table Number of tables: 5 available Entry modes: GPIB power meter or computed data

CW POWER SWEEP

Range: Sweeps between any two power levels at a single CW frequency.

Resolution: 0.01 dB/step

Accuracy: Same as CW power accuracy.

Step Size: User-controlled, 0.01 dB to the full power range of the instrument.

Step Dwell Time: Variable from 1 ms to 99 seconds. If the sweep crosses a step attenuator setting, there will be a sweep dwell of approximately 20 ms to allow setting of the step attenuator.

SWEEP FREQUENCY/STEP POWER

A power level step occurs after each frequency sweep. Power level remains constant for the length of time required to complete each sweep.

REMOTE OPERATION

All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via the GPIB (IEEE-488 interface bus).

GPIB Address: Selectable from a system menu **IEEE-488 Interface Function Subset:**

Source Handshake: SH1 Acceptor Handshake: AH1 Talker: T6 Listener: L4 Service Request: SR1 Remote/Local: RL1 Parallel Poll: PP1 Device Clear: DC1 Device Trigger: DT1 Controller Capability: C0, C1, C2, C3, C28 Tri-State Driver: E2

GPIB Status Annunciators: When the instrument is operating in Remote, the GPIB status annunciators (listed below) will appear in a window on the front panel LCD.

REMOTE: Operating on the GPIB (all instrument front panel keys except for the SYSTEM key and the RETURN TO LOCAL soft-key will be ignored).

LLO (LOCAL LOCKOUT): Disables the RETURN TO LOCAL soft-key. Instrument can be placed in local mode only via GPIB or cycling line power.

Emulations: The instrument responds to the published GPIB commands and responses of the ANRITSU Models 6600, 6700, and 6XX00-series signal sources. When emulating another signal source, the instrument will be limited to the capabilities, mnemonics, and parameter resolutions of the emulated instrument.

GENERAL

Stored Setups: Stores front panel settings and nine additional front-panel setups in a non-volatile RAM. A system menu allows saving and recalling of instrument setups. Whenever the instrument is turned on, control settings come on at the same functions and values existing when the instrument was turned off.

Memory Sequencing Input: Accepts a TTL low-level signal to sequence through ten stored setups. AUX I/O connector, rear panel.

Self-Test: Instrument self-test is performed when Selftest soft-key is selected. If an error is detected, an error message is displayed in a window on the LCD identifying the probable cause and remedy.

Secure Mode: Disables all frequency and power level state displays. Stored setups saved in secure mode remain secured when recalled. Mode selectable from a system menu and via GPIB.

Parameter Entry: Instrument-controlled parameters can be entered in three ways—keypad, rotary data knob, or the and touch pads of the cursor-control key.

The keypad is used to enter new parameter values; the rotary data knob and the cursor-control key are used to edit existing parameter values. The < and > touch pads of the cursor-control key move the cursor left and right one digit under the open parameter. The rotary data knob or the and touch pads will increment or decrement the digit position over the cursor.

Controlled parameters are frequency, power level, sweep time, dwell time, and number of steps.

Keypad entries are terminated by pressing the appropriate unit key (GHz/Sec/dBm, MHz/ms/dB, kHz/ μ s/STEPS, or Hz/ns/ADRS). Edits are terminated by exiting the edit menu.

Reset: Returns all instrument parameters to predefined default states or values. Any pending GPIB I/O is aborted. Selectable from the system menu.

Master/Slave Operation: Allows two 68XXXB output signals to be swept with a user-selected frequency offset. One 68XXXB synthesizer controls the other via AUX I/O and SE-RIAL I/O connections. Requires a Master/Slave Interface Cable Set (Part No. ND36329).

User Level Flatness Correction: Allows user to calibrate out path loss due to external switching and cables via entered power table from a GPIB power meter or calculated data. When user level correction is activated, entered power levels are delivered at the point where calibration was performed. Supported power meters are Anritsu ML4803A and HP 437B, 438A, and 70100A. Five user tables are available with up to 801 points/table.

Warm Up Time (Standard Time Base):

From Standby: 30 minutes.

From Cold Start (0°C): 120 hours to achieve $<2 \times 10^{-8}$ per day frequency stability.

Warm Up Time (Option 16 Time Base):

From Standby: 30 minutes

From Cold Start (0°C): 120 hours to achieve $<5 \times 10^{-10}$ per day frequency stability.

Instruments disconnected from AC power for more than 72 hours require 30 days to return to specified aging.

Power:

90-132 Vac or 180-264 Vac, 48–440 Hz, 400 VA maximum **Standby:** With ac line power connected, unit is placed in standby when front panel power switch is released from the OPERATE position.

Weight: 23 kg (50 lb) maximum Dimensions:

133 H x 429 W x 597 D mm (5.25 H x 16.875 W x 23.5 D in)

RF Output Connector:

Type K female, ≤40 GHz models Type V female, >40 GHz models

ENVIRONMENTAL

Storage Temperature Range: -40°C to +75°C. Operating Temperature Range: 0°C to +50°C. Relative Humidity: 5% to 95% at 40°C. Altitude: 4,600 meters (15,000 ft), 17.3" Hg. EMI: Meets the conducted and radiated emission requirements of: EN55011:1991/CISPR-11:1990 Group 1 Class A EN50082:1992/ IEC 801-2:1992 - 4kV CD, 8kV AD IEC 1000-4-3:1995 - 3 V/m IEC 801-4:1988 - 0.5 kV SL, 1 kV PL IEC 1000-4-5:1995 - 0.5 kV - 1 kV LN 0.5 kV - 1 kV NG

0.5 kV - 1 kV GL

MIL-STD-461C Part 2 RE01, RE02, CE01, CEO3, CS01, CS02, CS06, RS03

Input/Output Connectors				
Nomenclature	Туре	Location		
EXT ALC IN	BNC	Front & Rear Panel		
RF OUTPUT	K-Connector V-Connector	Standard-Front Panel Option 9-Rear Panel		
10 MHz REF IN	BNC	Rear Panel		
10 MHz REF OUT	BNC	Rear Panel		
HORIZ OUT	BNC	Rear Panel		
SEQ SYNC OUT	BNC	Rear Panel		
DWELL IN	BNC	Rear Panel		
V/GHz OUT	BNC	Rear Panel		
AUX I/O	25-pin D-type	Rear Panel		
SERIAL I/O	RJ45	Rear Panel		
IEEE-488 GPIB	Type 57	Rear Panel		

INPUTS and OUTPUTS

EXT ALC IN (External ALC Input): Provides for leveling the RF output signal externally with either a detector or power meter. Signal requirements are shown in the RF Output specifications on page B-4.

RF OUTPUT: Provides for RF output from 50Ω source impedance. K or V Connector, female. Option 9 moves the RF Output connector to the rear panel.

10 MHz REF IN: Accepts an external 10 MHz \pm 100 Hz, 0 to +10 dBm time-base signal. Automatically disconnects the internal high-stability time-base option, if installed. 50 Ω impedance.

10 MHz REF OUT: Provides a 0.5 Vp-p, AC coupled, 10 MHz signal derived from the internal frequency standard. 50Ω impedance.

HORIZ OUT (Horizontal Sweep Output): Provides 0V at beginning and +10V at end of sweep, regardless of sweep width. In CW mode, the voltage is proportional to frequency between 0V at low end and +10V at the high end of range. In CW mode, if CW RAMP is enabled, a repetitive, 0V to +10V ramp is provided.

SEQ SYNC OUT (Sequential Sync Output): Provides a +5V signal during retrace, at bandswitching points, and during each frequency step in step sweep mode, -5V during markers, and -10V during the selected marker. **DWELL IN:** Accepts an external TTL low-level signal to

pause the sweep. The sweep resumes when the signal is removed.

V/GHz OUT: Provides a reference voltage relative to the RF output frequency (refer to the table below).

Model Number	V/GHz Output
68037B, 68045B, 68047B	1.0V/GHz
68053B, 68055B, 68059B	0.5V/GHz
68063B, 68065B, 68069B	0.5V/GHz
68075B, 68077B	0.25V/GHz
68085B, 68087B	0.25V/GHz
68095B, 68097B	0.25V/GHz

AUX I/O (Auxiliary Input/Output): Provides for most of the rear panel BNC connections through a single, 25-pin, D-type connector. Supports master-slave operation with another 68XXXB synthesizer or allows for a single-cable interface with the Model 562 Scalar Network Analyzer and other ANRITSU instruments. For a pinout diagram and descriptions, see Appendix A, Figure A-2.

SERIAL I/O (Serial Input/Output): Provides access to RS-232 terminal ports to support service and calibration functions and master-slave operations.

IEEE-488 GPIB: Provides input/output connections for the General Purpose Interface Bus (GPIB). For a pinout diagram, see Appendix A, Figure A-3.

OPTIONS

Option 1, Rack Mounting: Rack mount kit containing a set of track slides (90° tilt capability), mounting ears, and front panel handles to let the instrument be mounted in a standard 19-inch equipment rack.

Option 2A, 110 dB Step Attenuator: Adds a 10 dB/step attenuator with 110 dB range for models having a high-end frequency of \leq 26.5 GHz. Rated RF output power is reduced. **Option 2B, 110 dB Step Attenuator:** Adds a 10 dB/step attenuator with 110 dB range for models having a high-end frequency of \leq 40 GHz. Rated RF output power is reduced.

Option 2C, 90 dB Step Attenuator: Adds a 10 dB/step attenuator with a 90 dB range for models having a high-end frequency of ≤50 GHz. Rated RF output power is reduced. Option 2D, 90 dB Step Attenuator: Adds a 10 dB/step

attenuator with a 90 dB range for models having a high-end frequency of ≤60 GHz. Rated RF output power is reduced. **Option 9, Rear Panel RF Output:** Moves the RF output connector to the rear panel.

Option 11, 0.1 Hz Frequency Resolution: Provides frequency resolution of 0.1 Hz.

Option 14, ANRITSU 360B VNA Compatibility: Modifies rack mounting hardware to mate unit in a ANRITSU 360B VNA console.

Option 15A, High Power Output: Adds high-power RF components to the instrument in the 2-26.5 GHz frequency range. Option 15A is standard in models having a high-end frequency that is >40 GHz.

Option 16, High-Stability Time Base: Adds an ovenized, 10 MHz crystal oscillator as a high-stability time base.

Option 17B, Delete Front Panel: Deletes the front panel for use in remote control applications where a front panel display and keyboard control are not needed.

Option 18, mmWave Bias Output: Provides bias output for 54000-xWRxx Millimeter Wave Source Modules. BNC Twinax connector, rear panel.

Option 19, SCPI Programmability: Adds GPIB command mnemonics complying with Standard Commands for Programmable Instruments (SCPI), Version 1993.0 SCPI programming complies with IEEE 488.2-1987.

Subject Index

0 - **9**

680XXB

Front Panel Layout, 3-6 General Description, 1-3 Manual, Electronic, 1-6 Manuals, Related, 1-6 Models, List of, 1-4 - 1-5 Options, List of, 1-7 Performance Specifications, B-1 Rear Panel Layout, A-2

A

ALC, 3-48 Alternate Sweep Frequency Mode Activating the Alternate Sweep, 3-34 Selecting a Power Level, 3-36 Selecting a Sweep Range, 3-35 Selecting Alternate Sweep, 3-34

C

Connectors Front Panel, 3-7 Rear Panel, A-1 CW Frequency Accuracy Test **Test Procedure**, 5-6 Test Records, 5-7 - 5-12 Test Setup, 5-5 CW Frequency Mode Menu Map, 4-6 Selecting a CW Frequency, 3-21 Selecting a Power Level, 3-23 Selecting CW Mode, 3-21 **CW Power Sweep Mode** Menu Map, 4-10 Selecting a Sweep Range, 3-44 Selecting a Sweep Trigger, 3-43 Selecting CW Power Sweep Mode, 3-41 Setting Dwell Time, 3-42 Setting Step Size, 3-42 CW Ramp, 3-24

D

Data Display Description, 3-8 Menu Display Format, 3-9 Menu Keys, 3-10 Data Entry Area Description, 3-12 Default Parameters, 3-16 - 3-17

E

Entering Data Editing the Current Value, 3-19 Entering a New Value, 3-20 Opening the Parameter, 3-18 Setting Increment Sizes, 3-68 Error Messages Operation Related, 6-8 Self Test, 6-3 - 6-7

F

Fixed Power Level Mode Menu Map, 4-9 Selecting a Power Level, 3-37 Selecting Fixed Power Level Mode, 3-37 **Frequency Control** Frequency List, 3-22 Selecting a Preset Frequency, 3-22 Selecting a Preset Sweep Range, 3-30 Setting a Preset Sweep Range, 3-31 **Frequency Markers** Marker List, 3-32 Frequency Modes CW Frequency Mode, 3-21 Manual Sweep Frequency Mode, 3-25 Step Sweep Frequency Mode, 3-25 Frequency Scaling, 3-62 Front Panel Connectors, 3-7 Data Display Area, 3-6, 3-8 Data Entry Area, 3-7, 3-12 **Description**, 3-6 Layout, 3-6

SUBJECT INDEX

General Description, 1-3 General Purpose Interface Bus (GPIB) Address, 2-7 Cable Length Restrictions, 2-7 Interface Connector, 2-7 Line Terminator, 2-9 Native Interface Language, 2-9 SCPI Interface Language, 2-9 Setup and Interconnection, 2-7

Ι

Identification Number, 1-6 Initial Inspection, 2-3

L

Level Offset, 3-40 Leveling Operations ALC Power Slope, 3-53 Attenuator Decoupling, 3-52 External Leveling, 3-49 Fixed Gain, 3-51 Internal Leveling, 3-49 Menu Map, 4-12 Selecting a Leveling Mode, 3-48 User Level (Flatness Correction) Calibration, 3-55

M

Maintenance. Routine **Display Cleaning**, 6-14 Fan Filter Cleaning, 6-13 Line Fuse Replacement, 6-14 Manual Sweep Frequency Mode Menu Map, 4-8 Selecting a Power Level, 3-31 Selecting a Sweep Range, 3-29 Manual, Electronic, 1-6 Manual, GPIB Programming, 1-6 Manual, Maintenance, 1-7 Manual, SCPI Programming, 1-6 Markers, Frequency, 3-32 Master Reset, 3-60, 3-70 Master-Slave Operation, 7-4 Menu Maps CW Frequency Mode, 4-6 CW Power Sweep Mode, 4-10 **Description**, 4-3

Fixed Power Level Mode, 4-9 Leveling Modes, 4-12 Manual Sweep Frequency Mode, 4-8 Sample Menu Map, 4-5 Step Sweep Frequency Mode, 4-7 Sweep Frequency/Step Power Mode, 4-11 System Configuration, 4-13 Messages Error, 6-3 - 6-8 Status, 6-9 Warning, 6-9 Models, List of, 1-4 - 1-5

0

Operating Environment, 2-6 Operational Verification Tests, 5-3 Operator Maintenance Error and Warning/Status Messages, 6-3 Routine Maintenance, 6-13 Troubleshooting, 6-10 Options, List of, 1-7

Р

Performance Specifications, 1-8, B-1 **Power Level Accuracy and Flatness Tests** Accuracy Test Procedure, 5-14 Flatness Test Procedure, 5-15 Test Records, 5-17 - 5-62 Test Setup, 5-13 **Power Level Control** Level List, 3-38 Selecting a Preset Power Level, 3-38 Selecting a Preset Sweep Range, 3-45 Setting a Preset Sweep Range, 3-45 **Power Level Modes** CW Power Sweep Mode, 3-41 Fixed Power Level Mode, 3-37 Sweep Frequency/Step Power Mode, 3-41 Power Level Offset, 3-40 Power Requirements, 2-4 Preparation for Storage/Shipment, 2-13 Preparation for Use, 2-4 Line Voltage Selection, 2-4 **Operating Environment**, 2-6 Power Requirements, 2-4 Standby Operation, 2-5 Warmup Time, 2-6

SUBJECT INDEX

R

Rack Mounting Kit Installation, 2-10 Rear Panel Connectors, A-1 Recommended Test Equipment, 1-8 Reference Oscillator Calibration, 3-72

S

Saving/Recalling Instrument Setups, 3-69 Scope of Manual, 1-3 Secure Operation, 3-71 Self Test Error Messages, 6-3 - 6-7 From System Menu, 3-15 Specifications, Performance, B-1 Start Up, 3-14 Start-Up Display, 3-14 **Step Sweep Frequency Mode** Menu Map, 4-7 Selecting a Power Level, 3-31 Selecting a Sweep Range, 3-29 Selecting Alternate Sweep, 3-34 Selecting Step Sweep Mode, 3-25 Setting a Sweep Trigger, 3-27 Setting Dwell Time, 3-26 Setting Step Size, 3-26 **Using Frequency Markers**, 3-32 Sweep Frequency Modes Manual Sweep Frequency Mode, 3-25 Step Sweep Frequency Mode, 3-25

Sweep Frequency/Step Power Mode Menu Map, 4-11 Selecting a Sweep Frequency/Step Power Mode, 3-46 Selecting a Sweep Range, 3-44 Setting Step Size, 3-47 System Configuration Configuring the Front Panel, 3-62 Configuring the GPIB, 3-66 Configuring the Rear Panel, 3-63 Configuring the RF, 3-64 Frequency Scaling, 3-62 Menu Map, 4-13 Setting Increment Sizes, 3-68

T

Test Equipment, 1-8, 5-3 Testing, Operational Verification CW Frequency Accuracy, 5-5 Initial 680XXB Checkout, 5-4 Power Level Accuracy and Flatness, 5-13 Test Equipment, 5-3 Test Records, 5-3, 5-7 - 5-12, 5-17 - 5-62 Troubleshooting Tables, 6-10 - 6-12

U

Use With Other Instruments Master-Slave Operation with a 68XXXB, 7-4 Use with a 360B Vector Network Analyzer, 7-11 Use with a 562 Scalar Network Analyzer, 7-10